$$$e^{\sqrt{2} \sqrt{x}}$$$ 的积分

该计算器将求出$$$e^{\sqrt{2} \sqrt{x}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int e^{\sqrt{2} \sqrt{x}}\, dx$$$

解答

$$$u=\sqrt{2} \sqrt{x}$$$

$$$du=\left(\sqrt{2} \sqrt{x}\right)^{\prime }dx = \frac{\sqrt{2}}{2 \sqrt{x}} dx$$$ (步骤见»),并有$$$\frac{dx}{\sqrt{x}} = \sqrt{2} du$$$

该积分可以改写为

$${\color{red}{\int{e^{\sqrt{2} \sqrt{x}} d x}}} = {\color{red}{\int{u e^{u} d u}}}$$

对于积分$$$\int{u e^{u} d u}$$$,使用分部积分法$$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$

$$$\operatorname{g}=u$$$$$$\operatorname{dv}=e^{u} du$$$

$$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (步骤见 »)。

所以,

$${\color{red}{\int{u e^{u} d u}}}={\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}={\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$

指数函数的积分为 $$$\int{e^{u} d u} = e^{u}$$$

$$u e^{u} - {\color{red}{\int{e^{u} d u}}} = u e^{u} - {\color{red}{e^{u}}}$$

回忆一下 $$$u=\sqrt{2} \sqrt{x}$$$:

$$- e^{{\color{red}{u}}} + {\color{red}{u}} e^{{\color{red}{u}}} = - e^{{\color{red}{\sqrt{2} \sqrt{x}}}} + {\color{red}{\sqrt{2} \sqrt{x}}} e^{{\color{red}{\sqrt{2} \sqrt{x}}}}$$

因此,

$$\int{e^{\sqrt{2} \sqrt{x}} d x} = \sqrt{2} \sqrt{x} e^{\sqrt{2} \sqrt{x}} - e^{\sqrt{2} \sqrt{x}}$$

化简:

$$\int{e^{\sqrt{2} \sqrt{x}} d x} = \left(\sqrt{2} \sqrt{x} - 1\right) e^{\sqrt{2} \sqrt{x}}$$

加上积分常数:

$$\int{e^{\sqrt{2} \sqrt{x}} d x} = \left(\sqrt{2} \sqrt{x} - 1\right) e^{\sqrt{2} \sqrt{x}}+C$$

答案

$$$\int e^{\sqrt{2} \sqrt{x}}\, dx = \left(\sqrt{2} \sqrt{x} - 1\right) e^{\sqrt{2} \sqrt{x}} + C$$$A


Please try a new game Rotatly