$$$e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$ 的积分
您的输入
求$$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx$$$。
解答
设$$$u=\sin{\left(x \right)}$$$。
则$$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步骤见»),并有$$$\cos{\left(x \right)} dx = du$$$。
因此,
$${\color{red}{\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x}}} = {\color{red}{\int{e^{u} d u}}}$$
指数函数的积分为 $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
回忆一下 $$$u=\sin{\left(x \right)}$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\sin{\left(x \right)}}}}$$
因此,
$$\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = e^{\sin{\left(x \right)}}$$
加上积分常数:
$$\int{e^{\sin{\left(x \right)}} \cos{\left(x \right)} d x} = e^{\sin{\left(x \right)}}+C$$
答案
$$$\int e^{\sin{\left(x \right)}} \cos{\left(x \right)}\, dx = e^{\sin{\left(x \right)}} + C$$$A