$$$x e^{2} \cos{\left(2 x \right)}$$$ 的积分

该计算器将求出$$$x e^{2} \cos{\left(2 x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int x e^{2} \cos{\left(2 x \right)}\, dx$$$

解答

$$$c=e^{2}$$$$$$f{\left(x \right)} = x \cos{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{x e^{2} \cos{\left(2 x \right)} d x}}} = {\color{red}{e^{2} \int{x \cos{\left(2 x \right)} d x}}}$$

对于积分$$$\int{x \cos{\left(2 x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=\cos{\left(2 x \right)} dx$$$

$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\cos{\left(2 x \right)} d x}=\frac{\sin{\left(2 x \right)}}{2}$$$ (步骤见 »)。

因此,

$$e^{2} {\color{red}{\int{x \cos{\left(2 x \right)} d x}}}=e^{2} {\color{red}{\left(x \cdot \frac{\sin{\left(2 x \right)}}{2}-\int{\frac{\sin{\left(2 x \right)}}{2} \cdot 1 d x}\right)}}=e^{2} {\color{red}{\left(\frac{x \sin{\left(2 x \right)}}{2} - \int{\frac{\sin{\left(2 x \right)}}{2} d x}\right)}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - {\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - {\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}\right)$$

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$

该积分可以改写为

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}\right)$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}\right)$$

正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}\right)$$

回忆一下 $$$u=2 x$$$:

$$e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left({\color{red}{u}} \right)}}{4}\right) = e^{2} \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}\right)$$

因此,

$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \left(\frac{x \sin{\left(2 x \right)}}{2} + \frac{\cos{\left(2 x \right)}}{4}\right) e^{2}$$

化简:

$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4}$$

加上积分常数:

$$\int{x e^{2} \cos{\left(2 x \right)} d x} = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4}+C$$

答案

$$$\int x e^{2} \cos{\left(2 x \right)}\, dx = \frac{\left(2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2}}{4} + C$$$A


Please try a new game Rotatly