$$$\frac{e}{\ln\left(x\right)}$$$ 的积分
您的输入
求$$$\int \frac{e}{\ln\left(x\right)}\, dx$$$。
解答
对 $$$c=e$$$ 和 $$$f{\left(x \right)} = \frac{1}{\ln{\left(x \right)}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{e}{\ln{\left(x \right)}} d x}}} = {\color{red}{e \int{\frac{1}{\ln{\left(x \right)}} d x}}}$$
该积分(对数积分)没有闭式表达式:
$$e {\color{red}{\int{\frac{1}{\ln{\left(x \right)}} d x}}} = e {\color{red}{\operatorname{li}{\left(x \right)}}}$$
因此,
$$\int{\frac{e}{\ln{\left(x \right)}} d x} = e \operatorname{li}{\left(x \right)}$$
加上积分常数:
$$\int{\frac{e}{\ln{\left(x \right)}} d x} = e \operatorname{li}{\left(x \right)}+C$$
答案
$$$\int \frac{e}{\ln\left(x\right)}\, dx = e \operatorname{li}{\left(x \right)} + C$$$A
Please try a new game Rotatly