$$$\frac{r}{a e^{2}}$$$ 关于$$$a$$$的积分
您的输入
求$$$\int \frac{r}{a e^{2}}\, da$$$。
解答
对 $$$c=\frac{r}{e^{2}}$$$ 和 $$$f{\left(a \right)} = \frac{1}{a}$$$ 应用常数倍法则 $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$:
$${\color{red}{\int{\frac{r}{a e^{2}} d a}}} = {\color{red}{\frac{r \int{\frac{1}{a} d a}}{e^{2}}}}$$
$$$\frac{1}{a}$$$ 的积分为 $$$\int{\frac{1}{a} d a} = \ln{\left(\left|{a}\right| \right)}$$$:
$$\frac{r {\color{red}{\int{\frac{1}{a} d a}}}}{e^{2}} = \frac{r {\color{red}{\ln{\left(\left|{a}\right| \right)}}}}{e^{2}}$$
因此,
$$\int{\frac{r}{a e^{2}} d a} = \frac{r \ln{\left(\left|{a}\right| \right)}}{e^{2}}$$
加上积分常数:
$$\int{\frac{r}{a e^{2}} d a} = \frac{r \ln{\left(\left|{a}\right| \right)}}{e^{2}}+C$$
答案
$$$\int \frac{r}{a e^{2}}\, da = \frac{r \ln\left(\left|{a}\right|\right)}{e^{2}} + C$$$A