$$$e^{\frac{y^{2}}{2}}$$$ 的积分
您的输入
求$$$\int e^{\frac{y^{2}}{2}}\, dy$$$。
解答
设$$$u=\frac{\sqrt{2} y}{2}$$$。
则$$$du=\left(\frac{\sqrt{2} y}{2}\right)^{\prime }dy = \frac{\sqrt{2}}{2} dy$$$ (步骤见»),并有$$$dy = \sqrt{2} du$$$。
积分变为
$${\color{red}{\int{e^{\frac{y^{2}}{2}} d y}}} = {\color{red}{\int{\sqrt{2} e^{u^{2}} d u}}}$$
对 $$$c=\sqrt{2}$$$ 和 $$$f{\left(u \right)} = e^{u^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\sqrt{2} e^{u^{2}} d u}}} = {\color{red}{\sqrt{2} \int{e^{u^{2}} d u}}}$$
该积分(虚误差函数)没有闭式表达式:
$$\sqrt{2} {\color{red}{\int{e^{u^{2}} d u}}} = \sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}$$
回忆一下 $$$u=\frac{\sqrt{2} y}{2}$$$:
$$\frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{2} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left({\color{red}{\left(\frac{\sqrt{2} y}{2}\right)}} \right)}}{2}$$
因此,
$$\int{e^{\frac{y^{2}}{2}} d y} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}$$
加上积分常数:
$$\int{e^{\frac{y^{2}}{2}} d y} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} y}{2} \right)}}{2}+C$$
答案
$$$\int e^{\frac{y^{2}}{2}}\, dy = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erfi}{\left(\frac{\sqrt{2} y}{2} \right)}}{2} + C$$$A