$$$\frac{1}{\sqrt{x} + 1}$$$ 的积分

该计算器将求出$$$\frac{1}{\sqrt{x} + 1}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{\sqrt{x} + 1}\, dx$$$

解答

$$$u=\sqrt{x}$$$

$$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (步骤见»),并有$$$\frac{dx}{\sqrt{x}} = 2 du$$$

该积分可以改写为

$${\color{red}{\int{\frac{1}{\sqrt{x} + 1} d x}}} = {\color{red}{\int{\frac{2 u}{u + 1} d u}}}$$

$$$c=2$$$$$$f{\left(u \right)} = \frac{u}{u + 1}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{2 u}{u + 1} d u}}} = {\color{red}{\left(2 \int{\frac{u}{u + 1} d u}\right)}}$$

改写并拆分该分式:

$$2 {\color{red}{\int{\frac{u}{u + 1} d u}}} = 2 {\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}}$$

逐项积分:

$$2 {\color{red}{\int{\left(1 - \frac{1}{u + 1}\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u + 1} d u}\right)}}$$

应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$

$$- 2 \int{\frac{1}{u + 1} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\frac{1}{u + 1} d u} + 2 {\color{red}{u}}$$

$$$v=u + 1$$$

$$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (步骤见»),并有$$$du = dv$$$

因此,

$$2 u - 2 {\color{red}{\int{\frac{1}{u + 1} d u}}} = 2 u - 2 {\color{red}{\int{\frac{1}{v} d v}}}$$

$$$\frac{1}{v}$$$ 的积分为 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$2 u - 2 {\color{red}{\int{\frac{1}{v} d v}}} = 2 u - 2 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

回忆一下 $$$v=u + 1$$$:

$$2 u - 2 \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = 2 u - 2 \ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}$$

回忆一下 $$$u=\sqrt{x}$$$:

$$- 2 \ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)} + 2 {\color{red}{u}} = - 2 \ln{\left(\left|{1 + {\color{red}{\sqrt{x}}}}\right| \right)} + 2 {\color{red}{\sqrt{x}}}$$

因此,

$$\int{\frac{1}{\sqrt{x} + 1} d x} = 2 \sqrt{x} - 2 \ln{\left(\left|{\sqrt{x} + 1}\right| \right)}$$

加上积分常数:

$$\int{\frac{1}{\sqrt{x} + 1} d x} = 2 \sqrt{x} - 2 \ln{\left(\left|{\sqrt{x} + 1}\right| \right)}+C$$

答案

$$$\int \frac{1}{\sqrt{x} + 1}\, dx = \left(2 \sqrt{x} - 2 \ln\left(\left|{\sqrt{x} + 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly