$$$- b^{2} t + \frac{1}{a^{2}}$$$ 关于$$$t$$$的积分
您的输入
求$$$\int \left(- b^{2} t + \frac{1}{a^{2}}\right)\, dt$$$。
解答
逐项积分:
$${\color{red}{\int{\left(- b^{2} t + \frac{1}{a^{2}}\right)d t}}} = {\color{red}{\left(\int{\frac{1}{a^{2}} d t} - \int{b^{2} t d t}\right)}}$$
应用常数法则 $$$\int c\, dt = c t$$$,使用 $$$c=\frac{1}{a^{2}}$$$:
$$- \int{b^{2} t d t} + {\color{red}{\int{\frac{1}{a^{2}} d t}}} = - \int{b^{2} t d t} + {\color{red}{\frac{t}{a^{2}}}}$$
对 $$$c=b^{2}$$$ 和 $$$f{\left(t \right)} = t$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$$- {\color{red}{\int{b^{2} t d t}}} + \frac{t}{a^{2}} = - {\color{red}{b^{2} \int{t d t}}} + \frac{t}{a^{2}}$$
应用幂法则 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$- b^{2} {\color{red}{\int{t d t}}} + \frac{t}{a^{2}}=- b^{2} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}} + \frac{t}{a^{2}}=- b^{2} {\color{red}{\left(\frac{t^{2}}{2}\right)}} + \frac{t}{a^{2}}$$
因此,
$$\int{\left(- b^{2} t + \frac{1}{a^{2}}\right)d t} = - \frac{b^{2} t^{2}}{2} + \frac{t}{a^{2}}$$
加上积分常数:
$$\int{\left(- b^{2} t + \frac{1}{a^{2}}\right)d t} = - \frac{b^{2} t^{2}}{2} + \frac{t}{a^{2}}+C$$
答案
$$$\int \left(- b^{2} t + \frac{1}{a^{2}}\right)\, dt = \left(- \frac{b^{2} t^{2}}{2} + \frac{t}{a^{2}}\right) + C$$$A