$$$\cos{\left(8 t \right)}$$$ 的积分
您的输入
求$$$\int \cos{\left(8 t \right)}\, dt$$$。
解答
设$$$u=8 t$$$。
则$$$du=\left(8 t\right)^{\prime }dt = 8 dt$$$ (步骤见»),并有$$$dt = \frac{du}{8}$$$。
该积分可以改写为
$${\color{red}{\int{\cos{\left(8 t \right)} d t}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}$$
对 $$$c=\frac{1}{8}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{{\color{red}{\sin{\left(u \right)}}}}{8}$$
回忆一下 $$$u=8 t$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{8} = \frac{\sin{\left({\color{red}{\left(8 t\right)}} \right)}}{8}$$
因此,
$$\int{\cos{\left(8 t \right)} d t} = \frac{\sin{\left(8 t \right)}}{8}$$
加上积分常数:
$$\int{\cos{\left(8 t \right)} d t} = \frac{\sin{\left(8 t \right)}}{8}+C$$
答案
$$$\int \cos{\left(8 t \right)}\, dt = \frac{\sin{\left(8 t \right)}}{8} + C$$$A