$$$\cos{\left(\frac{u}{v} \right)}$$$ 关于$$$u$$$的积分
您的输入
求$$$\int \cos{\left(\frac{u}{v} \right)}\, du$$$。
解答
设$$$w=\frac{u}{v}$$$。
则$$$dw=\left(\frac{u}{v}\right)^{\prime }du = \frac{du}{v}$$$ (步骤见»),并有$$$du = v dw$$$。
因此,
$${\color{red}{\int{\cos{\left(\frac{u}{v} \right)} d u}}} = {\color{red}{\int{v \cos{\left(w \right)} d w}}}$$
对 $$$c=v$$$ 和 $$$f{\left(w \right)} = \cos{\left(w \right)}$$$ 应用常数倍法则 $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$:
$${\color{red}{\int{v \cos{\left(w \right)} d w}}} = {\color{red}{v \int{\cos{\left(w \right)} d w}}}$$
余弦函数的积分为 $$$\int{\cos{\left(w \right)} d w} = \sin{\left(w \right)}$$$:
$$v {\color{red}{\int{\cos{\left(w \right)} d w}}} = v {\color{red}{\sin{\left(w \right)}}}$$
回忆一下 $$$w=\frac{u}{v}$$$:
$$v \sin{\left({\color{red}{w}} \right)} = v \sin{\left({\color{red}{\frac{u}{v}}} \right)}$$
因此,
$$\int{\cos{\left(\frac{u}{v} \right)} d u} = v \sin{\left(\frac{u}{v} \right)}$$
加上积分常数:
$$\int{\cos{\left(\frac{u}{v} \right)} d u} = v \sin{\left(\frac{u}{v} \right)}+C$$
答案
$$$\int \cos{\left(\frac{u}{v} \right)}\, du = v \sin{\left(\frac{u}{v} \right)} + C$$$A