$$$\cos{\left(\frac{2}{x} \right)}$$$ 的积分
您的输入
求$$$\int \cos{\left(\frac{2}{x} \right)}\, dx$$$。
解答
对于积分$$$\int{\cos{\left(\frac{2}{x} \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\cos{\left(\frac{2}{x} \right)}$$$ 和 $$$\operatorname{dv}=dx$$$。
则 $$$\operatorname{du}=\left(\cos{\left(\frac{2}{x} \right)}\right)^{\prime }dx=\frac{2 \sin{\left(\frac{2}{x} \right)}}{x^{2}} dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d x}=x$$$ (步骤见 »)。
因此,
$${\color{red}{\int{\cos{\left(\frac{2}{x} \right)} d x}}}={\color{red}{\left(\cos{\left(\frac{2}{x} \right)} \cdot x-\int{x \cdot \frac{2 \sin{\left(\frac{2}{x} \right)}}{x^{2}} d x}\right)}}={\color{red}{\left(x \cos{\left(\frac{2}{x} \right)} - \int{\frac{2 \sin{\left(\frac{2}{x} \right)}}{x} d x}\right)}}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \frac{\sin{\left(\frac{2}{x} \right)}}{x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$x \cos{\left(\frac{2}{x} \right)} - {\color{red}{\int{\frac{2 \sin{\left(\frac{2}{x} \right)}}{x} d x}}} = x \cos{\left(\frac{2}{x} \right)} - {\color{red}{\left(2 \int{\frac{\sin{\left(\frac{2}{x} \right)}}{x} d x}\right)}}$$
设$$$u=\frac{2}{x}$$$。
则$$$du=\left(\frac{2}{x}\right)^{\prime }dx = - \frac{2}{x^{2}} dx$$$ (步骤见»),并有$$$\frac{dx}{x^{2}} = - \frac{du}{2}$$$。
所以,
$$x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\frac{\sin{\left(\frac{2}{x} \right)}}{x} d x}}} = x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{u}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \frac{\sin{\left(u \right)}}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{u}\right)d u}}} = x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\left(- \int{\frac{\sin{\left(u \right)}}{u} d u}\right)}}$$
该积分(正弦积分)没有闭式表达式:
$$x \cos{\left(\frac{2}{x} \right)} + 2 {\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}} = x \cos{\left(\frac{2}{x} \right)} + 2 {\color{red}{\operatorname{Si}{\left(u \right)}}}$$
回忆一下 $$$u=\frac{2}{x}$$$:
$$x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left({\color{red}{u}} \right)} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left({\color{red}{\left(\frac{2}{x}\right)}} \right)}$$
因此,
$$\int{\cos{\left(\frac{2}{x} \right)} d x} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}$$
加上积分常数:
$$\int{\cos{\left(\frac{2}{x} \right)} d x} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}+C$$
答案
$$$\int \cos{\left(\frac{2}{x} \right)}\, dx = \left(x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}\right) + C$$$A