$$$a^{2} x$$$ 关于$$$x$$$的积分
您的输入
求$$$\int a^{2} x\, dx$$$。
解答
对 $$$c=a^{2}$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{a^{2} x d x}}} = {\color{red}{a^{2} \int{x d x}}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$a^{2} {\color{red}{\int{x d x}}}=a^{2} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=a^{2} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
因此,
$$\int{a^{2} x d x} = \frac{a^{2} x^{2}}{2}$$
加上积分常数:
$$\int{a^{2} x d x} = \frac{a^{2} x^{2}}{2}+C$$
答案
$$$\int a^{2} x\, dx = \frac{a^{2} x^{2}}{2} + C$$$A
Please try a new game Rotatly