$$$7 \tan^{3}{\left(x \right)} \sec{\left(x \right)}$$$ 的积分
您的输入
求$$$\int 7 \tan^{3}{\left(x \right)} \sec{\left(x \right)}\, dx$$$。
解答
对 $$$c=7$$$ 和 $$$f{\left(x \right)} = \tan^{3}{\left(x \right)} \sec{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{7 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\left(7 \int{\tan^{3}{\left(x \right)} \sec{\left(x \right)} d x}\right)}}$$
抽出一个正切,并将其余部分用正割表示,使用公式 $$$\tan^2\left(x \right)=\sec^2\left(x \right)-1$$$:
$$7 {\color{red}{\int{\tan^{3}{\left(x \right)} \sec{\left(x \right)} d x}}} = 7 {\color{red}{\int{\left(\sec^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$
设$$$u=\sec{\left(x \right)}$$$。
则$$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (步骤见»),并有$$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$。
因此,
$$7 {\color{red}{\int{\left(\sec^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)} \sec{\left(x \right)} d x}}} = 7 {\color{red}{\int{\left(u^{2} - 1\right)d u}}}$$
逐项积分:
$$7 {\color{red}{\int{\left(u^{2} - 1\right)d u}}} = 7 {\color{red}{\left(- \int{1 d u} + \int{u^{2} d u}\right)}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$7 \int{u^{2} d u} - 7 {\color{red}{\int{1 d u}}} = 7 \int{u^{2} d u} - 7 {\color{red}{u}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$- 7 u + 7 {\color{red}{\int{u^{2} d u}}}=- 7 u + 7 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- 7 u + 7 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
回忆一下 $$$u=\sec{\left(x \right)}$$$:
$$- 7 {\color{red}{u}} + \frac{7 {\color{red}{u}}^{3}}{3} = - 7 {\color{red}{\sec{\left(x \right)}}} + \frac{7 {\color{red}{\sec{\left(x \right)}}}^{3}}{3}$$
因此,
$$\int{7 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x} = \frac{7 \sec^{3}{\left(x \right)}}{3} - 7 \sec{\left(x \right)}$$
化简:
$$\int{7 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x} = \frac{7 \left(\sec^{2}{\left(x \right)} - 3\right) \sec{\left(x \right)}}{3}$$
加上积分常数:
$$\int{7 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x} = \frac{7 \left(\sec^{2}{\left(x \right)} - 3\right) \sec{\left(x \right)}}{3}+C$$
答案
$$$\int 7 \tan^{3}{\left(x \right)} \sec{\left(x \right)}\, dx = \frac{7 \left(\sec^{2}{\left(x \right)} - 3\right) \sec{\left(x \right)}}{3} + C$$$A