$$$5 \sin{\left(5 x \right)}$$$ 的积分
您的输入
求$$$\int 5 \sin{\left(5 x \right)}\, dx$$$。
解答
对 $$$c=5$$$ 和 $$$f{\left(x \right)} = \sin{\left(5 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{5 \sin{\left(5 x \right)} d x}}} = {\color{red}{\left(5 \int{\sin{\left(5 x \right)} d x}\right)}}$$
设$$$u=5 x$$$。
则$$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (步骤见»),并有$$$dx = \frac{du}{5}$$$。
积分变为
$$5 {\color{red}{\int{\sin{\left(5 x \right)} d x}}} = 5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}$$
对 $$$c=\frac{1}{5}$$$ 和 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}} = 5 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}$$
正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
回忆一下 $$$u=5 x$$$:
$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{\left(5 x\right)}} \right)}$$
因此,
$$\int{5 \sin{\left(5 x \right)} d x} = - \cos{\left(5 x \right)}$$
加上积分常数:
$$\int{5 \sin{\left(5 x \right)} d x} = - \cos{\left(5 x \right)}+C$$
答案
$$$\int 5 \sin{\left(5 x \right)}\, dx = - \cos{\left(5 x \right)} + C$$$A