$$$\frac{4 x}{x - 6}$$$ 的积分

该计算器将求出$$$\frac{4 x}{x - 6}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{4 x}{x - 6}\, dx$$$

解答

$$$c=4$$$$$$f{\left(x \right)} = \frac{x}{x - 6}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{4 x}{x - 6} d x}}} = {\color{red}{\left(4 \int{\frac{x}{x - 6} d x}\right)}}$$

改写并拆分该分式:

$$4 {\color{red}{\int{\frac{x}{x - 6} d x}}} = 4 {\color{red}{\int{\left(1 + \frac{6}{x - 6}\right)d x}}}$$

逐项积分:

$$4 {\color{red}{\int{\left(1 + \frac{6}{x - 6}\right)d x}}} = 4 {\color{red}{\left(\int{1 d x} + \int{\frac{6}{x - 6} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$

$$4 \int{\frac{6}{x - 6} d x} + 4 {\color{red}{\int{1 d x}}} = 4 \int{\frac{6}{x - 6} d x} + 4 {\color{red}{x}}$$

$$$c=6$$$$$$f{\left(x \right)} = \frac{1}{x - 6}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$4 x + 4 {\color{red}{\int{\frac{6}{x - 6} d x}}} = 4 x + 4 {\color{red}{\left(6 \int{\frac{1}{x - 6} d x}\right)}}$$

$$$u=x - 6$$$

$$$du=\left(x - 6\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$

该积分可以改写为

$$4 x + 24 {\color{red}{\int{\frac{1}{x - 6} d x}}} = 4 x + 24 {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$4 x + 24 {\color{red}{\int{\frac{1}{u} d u}}} = 4 x + 24 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回忆一下 $$$u=x - 6$$$:

$$4 x + 24 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 4 x + 24 \ln{\left(\left|{{\color{red}{\left(x - 6\right)}}}\right| \right)}$$

因此,

$$\int{\frac{4 x}{x - 6} d x} = 4 x + 24 \ln{\left(\left|{x - 6}\right| \right)}$$

加上积分常数:

$$\int{\frac{4 x}{x - 6} d x} = 4 x + 24 \ln{\left(\left|{x - 6}\right| \right)}+C$$

答案

$$$\int \frac{4 x}{x - 6}\, dx = \left(4 x + 24 \ln\left(\left|{x - 6}\right|\right)\right) + C$$$A


Please try a new game Rotatly