$$$624 - 312 x$$$ 的积分
您的输入
求$$$\int \left(624 - 312 x\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(624 - 312 x\right)d x}}} = {\color{red}{\left(\int{624 d x} - \int{312 x d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=624$$$:
$$- \int{312 x d x} + {\color{red}{\int{624 d x}}} = - \int{312 x d x} + {\color{red}{\left(624 x\right)}}$$
对 $$$c=312$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$624 x - {\color{red}{\int{312 x d x}}} = 624 x - {\color{red}{\left(312 \int{x d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$624 x - 312 {\color{red}{\int{x d x}}}=624 x - 312 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=624 x - 312 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
因此,
$$\int{\left(624 - 312 x\right)d x} = - 156 x^{2} + 624 x$$
化简:
$$\int{\left(624 - 312 x\right)d x} = 156 x \left(4 - x\right)$$
加上积分常数:
$$\int{\left(624 - 312 x\right)d x} = 156 x \left(4 - x\right)+C$$
答案
$$$\int \left(624 - 312 x\right)\, dx = 156 x \left(4 - x\right) + C$$$A