$$$24 t^{3} - 18 t - 6$$$ 的积分

该计算器将求出$$$24 t^{3} - 18 t - 6$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(24 t^{3} - 18 t - 6\right)\, dt$$$

解答

逐项积分:

$${\color{red}{\int{\left(24 t^{3} - 18 t - 6\right)d t}}} = {\color{red}{\left(- \int{6 d t} - \int{18 t d t} + \int{24 t^{3} d t}\right)}}$$

应用常数法则 $$$\int c\, dt = c t$$$,使用 $$$c=6$$$

$$- \int{18 t d t} + \int{24 t^{3} d t} - {\color{red}{\int{6 d t}}} = - \int{18 t d t} + \int{24 t^{3} d t} - {\color{red}{\left(6 t\right)}}$$

$$$c=18$$$$$$f{\left(t \right)} = t$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$

$$- 6 t + \int{24 t^{3} d t} - {\color{red}{\int{18 t d t}}} = - 6 t + \int{24 t^{3} d t} - {\color{red}{\left(18 \int{t d t}\right)}}$$

应用幂法则 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$- 6 t + \int{24 t^{3} d t} - 18 {\color{red}{\int{t d t}}}=- 6 t + \int{24 t^{3} d t} - 18 {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=- 6 t + \int{24 t^{3} d t} - 18 {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$

$$$c=24$$$$$$f{\left(t \right)} = t^{3}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$

$$- 9 t^{2} - 6 t + {\color{red}{\int{24 t^{3} d t}}} = - 9 t^{2} - 6 t + {\color{red}{\left(24 \int{t^{3} d t}\right)}}$$

应用幂法则 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=3$$$

$$- 9 t^{2} - 6 t + 24 {\color{red}{\int{t^{3} d t}}}=- 9 t^{2} - 6 t + 24 {\color{red}{\frac{t^{1 + 3}}{1 + 3}}}=- 9 t^{2} - 6 t + 24 {\color{red}{\left(\frac{t^{4}}{4}\right)}}$$

因此,

$$\int{\left(24 t^{3} - 18 t - 6\right)d t} = 6 t^{4} - 9 t^{2} - 6 t$$

化简:

$$\int{\left(24 t^{3} - 18 t - 6\right)d t} = 3 t \left(2 t^{3} - 3 t - 2\right)$$

加上积分常数:

$$\int{\left(24 t^{3} - 18 t - 6\right)d t} = 3 t \left(2 t^{3} - 3 t - 2\right)+C$$

答案

$$$\int \left(24 t^{3} - 18 t - 6\right)\, dt = 3 t \left(2 t^{3} - 3 t - 2\right) + C$$$A


Please try a new game Rotatly