$$$2 x \operatorname{atan}{\left(x \right)}$$$ 的积分

该计算器将求出$$$2 x \operatorname{atan}{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int 2 x \operatorname{atan}{\left(x \right)}\, dx$$$

解答

$$$c=2$$$$$$f{\left(x \right)} = x \operatorname{atan}{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{2 x \operatorname{atan}{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{x \operatorname{atan}{\left(x \right)} d x}\right)}}$$

对于积分$$$\int{x \operatorname{atan}{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\operatorname{atan}{\left(x \right)}$$$$$$\operatorname{dv}=x dx$$$

$$$\operatorname{du}=\left(\operatorname{atan}{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x^{2} + 1}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{x d x}=\frac{x^{2}}{2}$$$ (步骤见 »)。

因此,

$$2 {\color{red}{\int{x \operatorname{atan}{\left(x \right)} d x}}}=2 {\color{red}{\left(\operatorname{atan}{\left(x \right)} \cdot \frac{x^{2}}{2}-\int{\frac{x^{2}}{2} \cdot \frac{1}{x^{2} + 1} d x}\right)}}=2 {\color{red}{\left(\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \int{\frac{x^{2}}{2 x^{2} + 2} d x}\right)}}$$

化简被积函数:

$$x^{2} \operatorname{atan}{\left(x \right)} - 2 {\color{red}{\int{\frac{x^{2}}{2 x^{2} + 2} d x}}} = x^{2} \operatorname{atan}{\left(x \right)} - 2 {\color{red}{\int{\frac{x^{2}}{2 \left(x^{2} + 1\right)} d x}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \frac{x^{2}}{x^{2} + 1}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$x^{2} \operatorname{atan}{\left(x \right)} - 2 {\color{red}{\int{\frac{x^{2}}{2 \left(x^{2} + 1\right)} d x}}} = x^{2} \operatorname{atan}{\left(x \right)} - 2 {\color{red}{\left(\frac{\int{\frac{x^{2}}{x^{2} + 1} d x}}{2}\right)}}$$

改写并拆分该分式:

$$x^{2} \operatorname{atan}{\left(x \right)} - {\color{red}{\int{\frac{x^{2}}{x^{2} + 1} d x}}} = x^{2} \operatorname{atan}{\left(x \right)} - {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}$$

逐项积分:

$$x^{2} \operatorname{atan}{\left(x \right)} - {\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}} = x^{2} \operatorname{atan}{\left(x \right)} - {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x^{2} + 1} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$

$$x^{2} \operatorname{atan}{\left(x \right)} + \int{\frac{1}{x^{2} + 1} d x} - {\color{red}{\int{1 d x}}} = x^{2} \operatorname{atan}{\left(x \right)} + \int{\frac{1}{x^{2} + 1} d x} - {\color{red}{x}}$$

$$$\frac{1}{x^{2} + 1}$$$ 的积分为 $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:

$$x^{2} \operatorname{atan}{\left(x \right)} - x + {\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = x^{2} \operatorname{atan}{\left(x \right)} - x + {\color{red}{\operatorname{atan}{\left(x \right)}}}$$

因此,

$$\int{2 x \operatorname{atan}{\left(x \right)} d x} = x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}$$

加上积分常数:

$$\int{2 x \operatorname{atan}{\left(x \right)} d x} = x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}+C$$

答案

$$$\int 2 x \operatorname{atan}{\left(x \right)}\, dx = \left(x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly