$$$2 x - 2 - \frac{7 \sqrt{3}}{3 \sqrt{x}}$$$ 的积分

该计算器将求出$$$2 x - 2 - \frac{7 \sqrt{3}}{3 \sqrt{x}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(2 x - 2 - \frac{7 \sqrt{3}}{3 \sqrt{x}}\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(2 x - 2 - \frac{7 \sqrt{3}}{3 \sqrt{x}}\right)d x}}} = {\color{red}{\left(- \int{2 d x} + \int{2 x d x} - \int{\frac{7 \sqrt{3}}{3 \sqrt{x}} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=2$$$

$$\int{2 x d x} - \int{\frac{7 \sqrt{3}}{3 \sqrt{x}} d x} - {\color{red}{\int{2 d x}}} = \int{2 x d x} - \int{\frac{7 \sqrt{3}}{3 \sqrt{x}} d x} - {\color{red}{\left(2 x\right)}}$$

$$$c=2$$$$$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- 2 x - \int{\frac{7 \sqrt{3}}{3 \sqrt{x}} d x} + {\color{red}{\int{2 x d x}}} = - 2 x - \int{\frac{7 \sqrt{3}}{3 \sqrt{x}} d x} + {\color{red}{\left(2 \int{x d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$- 2 x - \int{\frac{7 \sqrt{3}}{3 \sqrt{x}} d x} + 2 {\color{red}{\int{x d x}}}=- 2 x - \int{\frac{7 \sqrt{3}}{3 \sqrt{x}} d x} + 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 2 x - \int{\frac{7 \sqrt{3}}{3 \sqrt{x}} d x} + 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

$$$c=\frac{7 \sqrt{3}}{3}$$$$$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$x^{2} - 2 x - {\color{red}{\int{\frac{7 \sqrt{3}}{3 \sqrt{x}} d x}}} = x^{2} - 2 x - {\color{red}{\left(\frac{7 \sqrt{3} \int{\frac{1}{\sqrt{x}} d x}}{3}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- \frac{1}{2}$$$

$$x^{2} - 2 x - \frac{7 \sqrt{3} {\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}}{3}=x^{2} - 2 x - \frac{7 \sqrt{3} {\color{red}{\int{x^{- \frac{1}{2}} d x}}}}{3}=x^{2} - 2 x - \frac{7 \sqrt{3} {\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{3}=x^{2} - 2 x - \frac{7 \sqrt{3} {\color{red}{\left(2 x^{\frac{1}{2}}\right)}}}{3}=x^{2} - 2 x - \frac{7 \sqrt{3} {\color{red}{\left(2 \sqrt{x}\right)}}}{3}$$

因此,

$$\int{\left(2 x - 2 - \frac{7 \sqrt{3}}{3 \sqrt{x}}\right)d x} = - \frac{14 \sqrt{3} \sqrt{x}}{3} + x^{2} - 2 x$$

加上积分常数:

$$\int{\left(2 x - 2 - \frac{7 \sqrt{3}}{3 \sqrt{x}}\right)d x} = - \frac{14 \sqrt{3} \sqrt{x}}{3} + x^{2} - 2 x+C$$

答案

$$$\int \left(2 x - 2 - \frac{7 \sqrt{3}}{3 \sqrt{x}}\right)\, dx = \left(- \frac{14 \sqrt{3} \sqrt{x}}{3} + x^{2} - 2 x\right) + C$$$A


Please try a new game Rotatly