$$$2 \sqrt{2} t$$$ 的积分
您的输入
求$$$\int 2 \sqrt{2} t\, dt$$$。
解答
对 $$$c=2 \sqrt{2}$$$ 和 $$$f{\left(t \right)} = t$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$${\color{red}{\int{2 \sqrt{2} t d t}}} = {\color{red}{\left(2 \sqrt{2} \int{t d t}\right)}}$$
应用幂法则 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$2 \sqrt{2} {\color{red}{\int{t d t}}}=2 \sqrt{2} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=2 \sqrt{2} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$
因此,
$$\int{2 \sqrt{2} t d t} = \sqrt{2} t^{2}$$
加上积分常数:
$$\int{2 \sqrt{2} t d t} = \sqrt{2} t^{2}+C$$
答案
$$$\int 2 \sqrt{2} t\, dt = \sqrt{2} t^{2} + C$$$A
Please try a new game Rotatly