$$$2 \cos{\left(2 x \right)}$$$ 的积分
您的输入
求$$$\int 2 \cos{\left(2 x \right)}\, dx$$$。
解答
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{2 \cos{\left(2 x \right)} d x}}} = {\color{red}{\left(2 \int{\cos{\left(2 x \right)} d x}\right)}}$$
设$$$u=2 x$$$。
则$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$。
该积分可以改写为
$$2 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 2 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\cos{\left(u \right)} d u}}} = {\color{red}{\sin{\left(u \right)}}}$$
回忆一下 $$$u=2 x$$$:
$$\sin{\left({\color{red}{u}} \right)} = \sin{\left({\color{red}{\left(2 x\right)}} \right)}$$
因此,
$$\int{2 \cos{\left(2 x \right)} d x} = \sin{\left(2 x \right)}$$
加上积分常数:
$$\int{2 \cos{\left(2 x \right)} d x} = \sin{\left(2 x \right)}+C$$
答案
$$$\int 2 \cos{\left(2 x \right)}\, dx = \sin{\left(2 x \right)} + C$$$A