$$$2 \cos^{8}{\left(x \right)} - 2 \cos^{5}{\left(x \right)}$$$ 的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \left(2 \cos^{8}{\left(x \right)} - 2 \cos^{5}{\left(x \right)}\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(2 \cos^{8}{\left(x \right)} - 2 \cos^{5}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{2 \cos^{5}{\left(x \right)} d x} + \int{2 \cos^{8}{\left(x \right)} d x}\right)}}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \cos^{5}{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\int{2 \cos^{8}{\left(x \right)} d x} - {\color{red}{\int{2 \cos^{5}{\left(x \right)} d x}}} = \int{2 \cos^{8}{\left(x \right)} d x} - {\color{red}{\left(2 \int{\cos^{5}{\left(x \right)} d x}\right)}}$$
提出一个余弦,并使用公式 $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$(令 $$$\alpha=x$$$)将其余部分用正弦表示:
$$\int{2 \cos^{8}{\left(x \right)} d x} - 2 {\color{red}{\int{\cos^{5}{\left(x \right)} d x}}} = \int{2 \cos^{8}{\left(x \right)} d x} - 2 {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)} d x}}}$$
设$$$u=\sin{\left(x \right)}$$$。
则$$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步骤见»),并有$$$\cos{\left(x \right)} dx = du$$$。
因此,
$$\int{2 \cos^{8}{\left(x \right)} d x} - 2 {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \cos{\left(x \right)} d x}}} = \int{2 \cos^{8}{\left(x \right)} d x} - 2 {\color{red}{\int{\left(1 - u^{2}\right)^{2} d u}}}$$
Expand the expression:
$$\int{2 \cos^{8}{\left(x \right)} d x} - 2 {\color{red}{\int{\left(1 - u^{2}\right)^{2} d u}}} = \int{2 \cos^{8}{\left(x \right)} d x} - 2 {\color{red}{\int{\left(u^{4} - 2 u^{2} + 1\right)d u}}}$$
逐项积分:
$$\int{2 \cos^{8}{\left(x \right)} d x} - 2 {\color{red}{\int{\left(u^{4} - 2 u^{2} + 1\right)d u}}} = \int{2 \cos^{8}{\left(x \right)} d x} - 2 {\color{red}{\left(\int{1 d u} - \int{2 u^{2} d u} + \int{u^{4} d u}\right)}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$\int{2 \cos^{8}{\left(x \right)} d x} + 2 \int{2 u^{2} d u} - 2 \int{u^{4} d u} - 2 {\color{red}{\int{1 d u}}} = \int{2 \cos^{8}{\left(x \right)} d x} + 2 \int{2 u^{2} d u} - 2 \int{u^{4} d u} - 2 {\color{red}{u}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=4$$$:
$$- 2 u + \int{2 \cos^{8}{\left(x \right)} d x} + 2 \int{2 u^{2} d u} - 2 {\color{red}{\int{u^{4} d u}}}=- 2 u + \int{2 \cos^{8}{\left(x \right)} d x} + 2 \int{2 u^{2} d u} - 2 {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=- 2 u + \int{2 \cos^{8}{\left(x \right)} d x} + 2 \int{2 u^{2} d u} - 2 {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$
对 $$$c=2$$$ 和 $$$f{\left(u \right)} = u^{2}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$- \frac{2 u^{5}}{5} - 2 u + \int{2 \cos^{8}{\left(x \right)} d x} + 2 {\color{red}{\int{2 u^{2} d u}}} = - \frac{2 u^{5}}{5} - 2 u + \int{2 \cos^{8}{\left(x \right)} d x} + 2 {\color{red}{\left(2 \int{u^{2} d u}\right)}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$- \frac{2 u^{5}}{5} - 2 u + \int{2 \cos^{8}{\left(x \right)} d x} + 4 {\color{red}{\int{u^{2} d u}}}=- \frac{2 u^{5}}{5} - 2 u + \int{2 \cos^{8}{\left(x \right)} d x} + 4 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- \frac{2 u^{5}}{5} - 2 u + \int{2 \cos^{8}{\left(x \right)} d x} + 4 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
回忆一下 $$$u=\sin{\left(x \right)}$$$:
$$\int{2 \cos^{8}{\left(x \right)} d x} - 2 {\color{red}{u}} + \frac{4 {\color{red}{u}}^{3}}{3} - \frac{2 {\color{red}{u}}^{5}}{5} = \int{2 \cos^{8}{\left(x \right)} d x} - 2 {\color{red}{\sin{\left(x \right)}}} + \frac{4 {\color{red}{\sin{\left(x \right)}}}^{3}}{3} - \frac{2 {\color{red}{\sin{\left(x \right)}}}^{5}}{5}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \cos^{8}{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + {\color{red}{\int{2 \cos^{8}{\left(x \right)} d x}}} = - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + {\color{red}{\left(2 \int{\cos^{8}{\left(x \right)} d x}\right)}}$$
应用降幂公式 $$$\cos^{8}{\left(\alpha \right)} = \frac{7 \cos{\left(2 \alpha \right)}}{16} + \frac{7 \cos{\left(4 \alpha \right)}}{32} + \frac{\cos{\left(6 \alpha \right)}}{16} + \frac{\cos{\left(8 \alpha \right)}}{128} + \frac{35}{128}$$$,并令 $$$\alpha=x$$$:
$$- \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + 2 {\color{red}{\int{\cos^{8}{\left(x \right)} d x}}} = - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + 2 {\color{red}{\int{\left(\frac{7 \cos{\left(2 x \right)}}{16} + \frac{7 \cos{\left(4 x \right)}}{32} + \frac{\cos{\left(6 x \right)}}{16} + \frac{\cos{\left(8 x \right)}}{128} + \frac{35}{128}\right)d x}}}$$
对 $$$c=\frac{1}{128}$$$ 和 $$$f{\left(x \right)} = 56 \cos{\left(2 x \right)} + 28 \cos{\left(4 x \right)} + 8 \cos{\left(6 x \right)} + \cos{\left(8 x \right)} + 35$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + 2 {\color{red}{\int{\left(\frac{7 \cos{\left(2 x \right)}}{16} + \frac{7 \cos{\left(4 x \right)}}{32} + \frac{\cos{\left(6 x \right)}}{16} + \frac{\cos{\left(8 x \right)}}{128} + \frac{35}{128}\right)d x}}} = - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + 2 {\color{red}{\left(\frac{\int{\left(56 \cos{\left(2 x \right)} + 28 \cos{\left(4 x \right)} + 8 \cos{\left(6 x \right)} + \cos{\left(8 x \right)} + 35\right)d x}}{128}\right)}}$$
逐项积分:
$$- \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{{\color{red}{\int{\left(56 \cos{\left(2 x \right)} + 28 \cos{\left(4 x \right)} + 8 \cos{\left(6 x \right)} + \cos{\left(8 x \right)} + 35\right)d x}}}}{64} = - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{{\color{red}{\left(\int{35 d x} + \int{56 \cos{\left(2 x \right)} d x} + \int{28 \cos{\left(4 x \right)} d x} + \int{8 \cos{\left(6 x \right)} d x} + \int{\cos{\left(8 x \right)} d x}\right)}}}{64}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=35$$$:
$$- \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{8 \cos{\left(6 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\int{35 d x}}}}{64} = - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{8 \cos{\left(6 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\left(35 x\right)}}}{64}$$
对 $$$c=8$$$ 和 $$$f{\left(x \right)} = \cos{\left(6 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\int{8 \cos{\left(6 x \right)} d x}}}}{64} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\left(8 \int{\cos{\left(6 x \right)} d x}\right)}}}{64}$$
设$$$u=6 x$$$。
则$$$du=\left(6 x\right)^{\prime }dx = 6 dx$$$ (步骤见»),并有$$$dx = \frac{du}{6}$$$。
该积分可以改写为
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\int{\cos{\left(6 x \right)} d x}}}}{8} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{8}$$
对 $$$c=\frac{1}{6}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{8} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{6}\right)}}}{8}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{48} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\sin{\left(u \right)}}}}{48}$$
回忆一下 $$$u=6 x$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{\sin{\left({\color{red}{u}} \right)}}{48} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{28 \cos{\left(4 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{\sin{\left({\color{red}{\left(6 x\right)}} \right)}}{48}$$
对 $$$c=28$$$ 和 $$$f{\left(x \right)} = \cos{\left(4 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\int{28 \cos{\left(4 x \right)} d x}}}}{64} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\left(28 \int{\cos{\left(4 x \right)} d x}\right)}}}{64}$$
设$$$u=4 x$$$。
则$$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (步骤见»),并有$$$dx = \frac{du}{4}$$$。
所以,
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{16} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{16}$$
对 $$$c=\frac{1}{4}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{16} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{16}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\sin{\left(u \right)}}}}{64}$$
回忆一下 $$$u=4 x$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 \sin{\left({\color{red}{u}} \right)}}{64} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{56 \cos{\left(2 x \right)} d x}}{64} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 \sin{\left({\color{red}{\left(4 x\right)}} \right)}}{64}$$
对 $$$c=56$$$ 和 $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\int{56 \cos{\left(2 x \right)} d x}}}}{64} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{{\color{red}{\left(56 \int{\cos{\left(2 x \right)} d x}\right)}}}{64}$$
设$$$u=2 x$$$。
则$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$。
因此,
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{8} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{8}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{8} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{8}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{16} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 {\color{red}{\sin{\left(u \right)}}}}{16}$$
回忆一下 $$$u=2 x$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 \sin{\left({\color{red}{u}} \right)}}{16} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\int{\cos{\left(8 x \right)} d x}}{64} + \frac{7 \sin{\left({\color{red}{\left(2 x\right)}} \right)}}{16}$$
设$$$u=8 x$$$。
则$$$du=\left(8 x\right)^{\prime }dx = 8 dx$$$ (步骤见»),并有$$$dx = \frac{du}{8}$$$。
该积分可以改写为
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(2 x \right)}}{16} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\int{\cos{\left(8 x \right)} d x}}}}{64} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(2 x \right)}}{16} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{64}$$
对 $$$c=\frac{1}{8}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(2 x \right)}}{16} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{8} d u}}}}{64} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(2 x \right)}}{16} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{8}\right)}}}{64}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(2 x \right)}}{16} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{512} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(2 x \right)}}{16} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{{\color{red}{\sin{\left(u \right)}}}}{512}$$
回忆一下 $$$u=8 x$$$:
$$\frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(2 x \right)}}{16} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\sin{\left({\color{red}{u}} \right)}}{512} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(2 x \right)}}{16} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\sin{\left({\color{red}{\left(8 x\right)}} \right)}}{512}$$
因此,
$$\int{\left(2 \cos^{8}{\left(x \right)} - 2 \cos^{5}{\left(x \right)}\right)d x} = \frac{35 x}{64} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{4 \sin^{3}{\left(x \right)}}{3} - 2 \sin{\left(x \right)} + \frac{7 \sin{\left(2 x \right)}}{16} + \frac{7 \sin{\left(4 x \right)}}{64} + \frac{\sin{\left(6 x \right)}}{48} + \frac{\sin{\left(8 x \right)}}{512}$$
化简:
$$\int{\left(2 \cos^{8}{\left(x \right)} - 2 \cos^{5}{\left(x \right)}\right)d x} = \frac{4200 x - 3072 \sin^{5}{\left(x \right)} + 10240 \sin^{3}{\left(x \right)} - 15360 \sin{\left(x \right)} + 3360 \sin{\left(2 x \right)} + 840 \sin{\left(4 x \right)} + 160 \sin{\left(6 x \right)} + 15 \sin{\left(8 x \right)}}{7680}$$
加上积分常数:
$$\int{\left(2 \cos^{8}{\left(x \right)} - 2 \cos^{5}{\left(x \right)}\right)d x} = \frac{4200 x - 3072 \sin^{5}{\left(x \right)} + 10240 \sin^{3}{\left(x \right)} - 15360 \sin{\left(x \right)} + 3360 \sin{\left(2 x \right)} + 840 \sin{\left(4 x \right)} + 160 \sin{\left(6 x \right)} + 15 \sin{\left(8 x \right)}}{7680}+C$$
答案
$$$\int \left(2 \cos^{8}{\left(x \right)} - 2 \cos^{5}{\left(x \right)}\right)\, dx = \frac{4200 x - 3072 \sin^{5}{\left(x \right)} + 10240 \sin^{3}{\left(x \right)} - 15360 \sin{\left(x \right)} + 3360 \sin{\left(2 x \right)} + 840 \sin{\left(4 x \right)} + 160 \sin{\left(6 x \right)} + 15 \sin{\left(8 x \right)}}{7680} + C$$$A