$$$22^{x}$$$ 的积分
您的输入
求$$$\int 22^{x}\, dx$$$。
解答
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=22$$$:
$${\color{red}{\int{22^{x} d x}}} = {\color{red}{\frac{22^{x}}{\ln{\left(22 \right)}}}}$$
因此,
$$\int{22^{x} d x} = \frac{22^{x}}{\ln{\left(22 \right)}}$$
加上积分常数:
$$\int{22^{x} d x} = \frac{22^{x}}{\ln{\left(22 \right)}}+C$$
答案
$$$\int 22^{x}\, dx = \frac{22^{x}}{\ln\left(22\right)} + C$$$A
Please try a new game Rotatly