$$$2025^{x}$$$ 的积分
您的输入
求$$$\int 2025^{x}\, dx$$$。
解答
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=2025$$$:
$${\color{red}{\int{2025^{x} d x}}} = {\color{red}{\frac{2025^{x}}{\ln{\left(2025 \right)}}}}$$
因此,
$$\int{2025^{x} d x} = \frac{2025^{x}}{\ln{\left(2025 \right)}}$$
化简:
$$\int{2025^{x} d x} = \frac{2025^{x}}{2 \ln{\left(45 \right)}}$$
加上积分常数:
$$\int{2025^{x} d x} = \frac{2025^{x}}{2 \ln{\left(45 \right)}}+C$$
答案
$$$\int 2025^{x}\, dx = \frac{2025^{x}}{2 \ln\left(45\right)} + C$$$A
Please try a new game Rotatly