$$$- 4 \sqrt{30} x^{2} \sqrt{i n t} - x^{2} + 880$$$ 关于$$$x$$$的积分

该计算器将求出$$$- 4 \sqrt{30} x^{2} \sqrt{i n t} - x^{2} + 880$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- 4 \sqrt{30} x^{2} \sqrt{i n t} - x^{2} + 880\right)\, dx$$$

解答

输入已重写为:$$$\int{\left(- 4 \sqrt{30} x^{2} \sqrt{i n t} - x^{2} + 880\right)d x}=\int{\left(- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} - x^{2} + 880\right)d x}$$$

逐项积分:

$${\color{red}{\int{\left(- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} - x^{2} + 880\right)d x}}} = {\color{red}{\left(\int{880 d x} - \int{x^{2} d x} - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=880$$$

$$- \int{x^{2} d x} - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x} + {\color{red}{\int{880 d x}}} = - \int{x^{2} d x} - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x} + {\color{red}{\left(880 x\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$880 x - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x} - {\color{red}{\int{x^{2} d x}}}=880 x - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=880 x - \int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

$$$c=4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t}$$$$$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{x^{3}}{3} + 880 x - {\color{red}{\int{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} d x}}} = - \frac{x^{3}}{3} + 880 x - {\color{red}{\left(4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} \int{x^{2} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} {\color{red}{\int{x^{2} d x}}} - \frac{x^{3}}{3} + 880 x=- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}} - \frac{x^{3}}{3} + 880 x=- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} {\color{red}{\left(\frac{x^{3}}{3}\right)}} - \frac{x^{3}}{3} + 880 x$$

因此,

$$\int{\left(- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} - x^{2} + 880\right)d x} = - \frac{4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{3}}{3} - \frac{x^{3}}{3} + 880 x$$

化简:

$$\int{\left(- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} - x^{2} + 880\right)d x} = \frac{x \left(- 4 \sqrt{15} \sqrt{n} \sqrt{t} x^{2} \left(1 + i\right) - x^{2} + 2640\right)}{3}$$

加上积分常数:

$$\int{\left(- 4 \sqrt{30} \sqrt{i} \sqrt{n} \sqrt{t} x^{2} - x^{2} + 880\right)d x} = \frac{x \left(- 4 \sqrt{15} \sqrt{n} \sqrt{t} x^{2} \left(1 + i\right) - x^{2} + 2640\right)}{3}+C$$

答案

$$$\int \left(- 4 \sqrt{30} x^{2} \sqrt{i n t} - x^{2} + 880\right)\, dx = \frac{x \left(- 4 \sqrt{15} \sqrt{n} \sqrt{t} x^{2} \left(1 + i\right) - x^{2} + 2640\right)}{3} + C$$$A


Please try a new game Rotatly