$$$\frac{2}{x^{3}}$$$ 的积分
您的输入
求$$$\int \frac{2}{x^{3}}\, dx$$$。
解答
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \frac{1}{x^{3}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{2}{x^{3}} d x}}} = {\color{red}{\left(2 \int{\frac{1}{x^{3}} d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-3$$$:
$$2 {\color{red}{\int{\frac{1}{x^{3}} d x}}}=2 {\color{red}{\int{x^{-3} d x}}}=2 {\color{red}{\frac{x^{-3 + 1}}{-3 + 1}}}=2 {\color{red}{\left(- \frac{x^{-2}}{2}\right)}}=2 {\color{red}{\left(- \frac{1}{2 x^{2}}\right)}}$$
因此,
$$\int{\frac{2}{x^{3}} d x} = - \frac{1}{x^{2}}$$
加上积分常数:
$$\int{\frac{2}{x^{3}} d x} = - \frac{1}{x^{2}}+C$$
答案
$$$\int \frac{2}{x^{3}}\, dx = - \frac{1}{x^{2}} + C$$$A