$$$\frac{21 \sin{\left(\pi x \right)}}{2}$$$ 的积分

该计算器将求出$$$\frac{21 \sin{\left(\pi x \right)}}{2}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{21 \sin{\left(\pi x \right)}}{2}\, dx$$$

解答

$$$c=\frac{21}{2}$$$$$$f{\left(x \right)} = \sin{\left(\pi x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{21 \sin{\left(\pi x \right)}}{2} d x}}} = {\color{red}{\left(\frac{21 \int{\sin{\left(\pi x \right)} d x}}{2}\right)}}$$

$$$u=\pi x$$$

$$$du=\left(\pi x\right)^{\prime }dx = \pi dx$$$ (步骤见»),并有$$$dx = \frac{du}{\pi}$$$

该积分可以改写为

$$\frac{21 {\color{red}{\int{\sin{\left(\pi x \right)} d x}}}}{2} = \frac{21 {\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}}}{2}$$

$$$c=\frac{1}{\pi}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\frac{21 {\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}}}{2} = \frac{21 {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{\pi}}}}{2}$$

正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{21 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{2 \pi} = \frac{21 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2 \pi}$$

回忆一下 $$$u=\pi x$$$:

$$- \frac{21 \cos{\left({\color{red}{u}} \right)}}{2 \pi} = - \frac{21 \cos{\left({\color{red}{\pi x}} \right)}}{2 \pi}$$

因此,

$$\int{\frac{21 \sin{\left(\pi x \right)}}{2} d x} = - \frac{21 \cos{\left(\pi x \right)}}{2 \pi}$$

加上积分常数:

$$\int{\frac{21 \sin{\left(\pi x \right)}}{2} d x} = - \frac{21 \cos{\left(\pi x \right)}}{2 \pi}+C$$

答案

$$$\int \frac{21 \sin{\left(\pi x \right)}}{2}\, dx = - \frac{21 \cos{\left(\pi x \right)}}{2 \pi} + C$$$A


Please try a new game Rotatly