$$$- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}$$$ 的积分
您的输入
求$$$\int \left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)\, dx$$$。
解答
对 $$$c=- \frac{3}{2}$$$ 和 $$$f{\left(x \right)} = \sin{\left(\frac{x}{2} - 1 \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x}}} = {\color{red}{\left(- \frac{3 \int{\sin{\left(\frac{x}{2} - 1 \right)} d x}}{2}\right)}}$$
设$$$u=\frac{x}{2} - 1$$$。
则$$$du=\left(\frac{x}{2} - 1\right)^{\prime }dx = \frac{dx}{2}$$$ (步骤见»),并有$$$dx = 2 du$$$。
积分变为
$$- \frac{3 {\color{red}{\int{\sin{\left(\frac{x}{2} - 1 \right)} d x}}}}{2} = - \frac{3 {\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{2}$$
对 $$$c=2$$$ 和 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$- \frac{3 {\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{2} = - \frac{3 {\color{red}{\left(2 \int{\sin{\left(u \right)} d u}\right)}}}{2}$$
正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- 3 {\color{red}{\int{\sin{\left(u \right)} d u}}} = - 3 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
回忆一下 $$$u=\frac{x}{2} - 1$$$:
$$3 \cos{\left({\color{red}{u}} \right)} = 3 \cos{\left({\color{red}{\left(\frac{x}{2} - 1\right)}} \right)}$$
因此,
$$\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x} = 3 \cos{\left(\frac{x}{2} - 1 \right)}$$
加上积分常数:
$$\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x} = 3 \cos{\left(\frac{x}{2} - 1 \right)}+C$$
答案
$$$\int \left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)\, dx = 3 \cos{\left(\frac{x}{2} - 1 \right)} + C$$$A