$$$\frac{1}{x \sqrt{\ln\left(x\right)}}$$$ 的积分
您的输入
求$$$\int \frac{1}{x \sqrt{\ln\left(x\right)}}\, dx$$$。
解答
设$$$u=\ln{\left(x \right)}$$$。
则$$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (步骤见»),并有$$$\frac{dx}{x} = du$$$。
积分变为
$${\color{red}{\int{\frac{1}{x \sqrt{\ln{\left(x \right)}}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- \frac{1}{2}$$$:
$${\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}={\color{red}{\int{u^{- \frac{1}{2}} d u}}}={\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}={\color{red}{\left(2 u^{\frac{1}{2}}\right)}}={\color{red}{\left(2 \sqrt{u}\right)}}$$
回忆一下 $$$u=\ln{\left(x \right)}$$$:
$$2 \sqrt{{\color{red}{u}}} = 2 \sqrt{{\color{red}{\ln{\left(x \right)}}}}$$
因此,
$$\int{\frac{1}{x \sqrt{\ln{\left(x \right)}}} d x} = 2 \sqrt{\ln{\left(x \right)}}$$
加上积分常数:
$$\int{\frac{1}{x \sqrt{\ln{\left(x \right)}}} d x} = 2 \sqrt{\ln{\left(x \right)}}+C$$
答案
$$$\int \frac{1}{x \sqrt{\ln\left(x\right)}}\, dx = 2 \sqrt{\ln\left(x\right)} + C$$$A