$$$\frac{1}{- c + z}$$$ 关于$$$c$$$的积分
您的输入
求$$$\int \frac{1}{- c + z}\, dc$$$。
解答
设$$$u=- c + z$$$。
则$$$du=\left(- c + z\right)^{\prime }dc = - dc$$$ (步骤见»),并有$$$dc = - du$$$。
所以,
$${\color{red}{\int{\frac{1}{- c + z} d c}}} = {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- {\color{red}{\int{\frac{1}{u} d u}}} = - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=- c + z$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\left(- c + z\right)}}}\right| \right)}$$
因此,
$$\int{\frac{1}{- c + z} d c} = - \ln{\left(\left|{c - z}\right| \right)}$$
加上积分常数:
$$\int{\frac{1}{- c + z} d c} = - \ln{\left(\left|{c - z}\right| \right)}+C$$
答案
$$$\int \frac{1}{- c + z}\, dc = - \ln\left(\left|{c - z}\right|\right) + C$$$A