$$$\frac{1}{x^{2} - x}$$$ 的积分
您的输入
求$$$\int \frac{1}{x^{2} - x}\, dx$$$。
解答
进行部分分式分解(步骤可见»):
$${\color{red}{\int{\frac{1}{x^{2} - x} d x}}} = {\color{red}{\int{\left(\frac{1}{x - 1} - \frac{1}{x}\right)d x}}}$$
逐项积分:
$${\color{red}{\int{\left(\frac{1}{x - 1} - \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x} d x} + \int{\frac{1}{x - 1} d x}\right)}}$$
设$$$u=x - 1$$$。
则$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
所以,
$$- \int{\frac{1}{x} d x} + {\color{red}{\int{\frac{1}{x - 1} d x}}} = - \int{\frac{1}{x} d x} + {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{1}{x} d x} + {\color{red}{\int{\frac{1}{u} d u}}} = - \int{\frac{1}{x} d x} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=x - 1$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{\frac{1}{x} d x} = \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)} - \int{\frac{1}{x} d x}$$
$$$\frac{1}{x}$$$ 的积分为 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\int{\frac{1}{x} d x}}} = \ln{\left(\left|{x - 1}\right| \right)} - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
因此,
$$\int{\frac{1}{x^{2} - x} d x} = - \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 1}\right| \right)}$$
加上积分常数:
$$\int{\frac{1}{x^{2} - x} d x} = - \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 1}\right| \right)}+C$$
答案
$$$\int \frac{1}{x^{2} - x}\, dx = \left(- \ln\left(\left|{x}\right|\right) + \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A