$$$\frac{1}{x \ln\left(x\right)}$$$ 的积分
您的输入
求$$$\int \frac{1}{x \ln\left(x\right)}\, dx$$$。
解答
设$$$u=\ln{\left(x \right)}$$$。
则$$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (步骤见»),并有$$$\frac{dx}{x} = du$$$。
积分变为
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=\ln{\left(x \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\ln{\left(x \right)}}}}\right| \right)}$$
因此,
$$\int{\frac{1}{x \ln{\left(x \right)}} d x} = \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}$$
加上积分常数:
$$\int{\frac{1}{x \ln{\left(x \right)}} d x} = \ln{\left(\left|{\ln{\left(x \right)}}\right| \right)}+C$$
答案
$$$\int \frac{1}{x \ln\left(x\right)}\, dx = \ln\left(\left|{\ln\left(x\right)}\right|\right) + C$$$A