$$$\frac{1}{x \ln\left(\frac{c}{x}\right)}$$$ 关于$$$x$$$的积分

该计算器将求出$$$\frac{1}{x \ln\left(\frac{c}{x}\right)}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{x \ln\left(\frac{c}{x}\right)}\, dx$$$

解答

$$$u=\frac{c}{x}$$$

$$$du=\left(\frac{c}{x}\right)^{\prime }dx = - \frac{c}{x^{2}} dx$$$ (步骤见»),并有$$$\frac{dx}{x^{2}} = - \frac{du}{c}$$$

因此,

$${\color{red}{\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}}$$

$$$c=-1$$$$$$f{\left(u \right)} = \frac{1}{u \ln{\left(u \right)}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\left(- \frac{1}{u \ln{\left(u \right)}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u \ln{\left(u \right)}} d u}\right)}}$$

$$$v=\ln{\left(u \right)}$$$

$$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (步骤见»),并有$$$\frac{du}{u} = dv$$$

因此,

$$- {\color{red}{\int{\frac{1}{u \ln{\left(u \right)}} d u}}} = - {\color{red}{\int{\frac{1}{v} d v}}}$$

$$$\frac{1}{v}$$$ 的积分为 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- {\color{red}{\int{\frac{1}{v} d v}}} = - {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

回忆一下 $$$v=\ln{\left(u \right)}$$$:

$$- \ln{\left(\left|{{\color{red}{v}}}\right| \right)} = - \ln{\left(\left|{{\color{red}{\ln{\left(u \right)}}}}\right| \right)}$$

回忆一下 $$$u=\frac{c}{x}$$$:

$$- \ln{\left(\left|{\ln{\left({\color{red}{u}} \right)}}\right| \right)} = - \ln{\left(\left|{\ln{\left({\color{red}{\frac{c}{x}}} \right)}}\right| \right)}$$

因此,

$$\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x} = - \ln{\left(\left|{\ln{\left(\frac{c}{x} \right)}}\right| \right)}$$

加上积分常数:

$$\int{\frac{1}{x \ln{\left(\frac{c}{x} \right)}} d x} = - \ln{\left(\left|{\ln{\left(\frac{c}{x} \right)}}\right| \right)}+C$$

答案

$$$\int \frac{1}{x \ln\left(\frac{c}{x}\right)}\, dx = - \ln\left(\left|{\ln\left(\frac{c}{x}\right)}\right|\right) + C$$$A


Please try a new game Rotatly