$$$\frac{1}{- a + t}$$$ 关于$$$t$$$的积分
您的输入
求$$$\int \frac{1}{- a + t}\, dt$$$。
解答
设$$$u=- a + t$$$。
则$$$du=\left(- a + t\right)^{\prime }dt = 1 dt$$$ (步骤见»),并有$$$dt = du$$$。
所以,
$${\color{red}{\int{\frac{1}{- a + t} d t}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=- a + t$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\left(- a + t\right)}}}\right| \right)}$$
因此,
$$\int{\frac{1}{- a + t} d t} = \ln{\left(\left|{a - t}\right| \right)}$$
加上积分常数:
$$\int{\frac{1}{- a + t} d t} = \ln{\left(\left|{a - t}\right| \right)}+C$$
答案
$$$\int \frac{1}{- a + t}\, dt = \ln\left(\left|{a - t}\right|\right) + C$$$A