$$$\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}}$$$ 的积分
您的输入
求$$$\int \frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}}\, dx$$$。
解答
对 $$$c=\frac{\sqrt{2}}{2 \sqrt{\pi}}$$$ 和 $$$f{\left(x \right)} = e^{- \frac{x^{2}}{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{e^{- \frac{x^{2}}{2}} d x}}{2 \sqrt{\pi}}\right)}}$$
设$$$u=\frac{\sqrt{2} x}{2}$$$。
则$$$du=\left(\frac{\sqrt{2} x}{2}\right)^{\prime }dx = \frac{\sqrt{2}}{2} dx$$$ (步骤见»),并有$$$dx = \sqrt{2} du$$$。
所以,
$$\frac{\sqrt{2} {\color{red}{\int{e^{- \frac{x^{2}}{2}} d x}}}}{2 \sqrt{\pi}} = \frac{\sqrt{2} {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}}}{2 \sqrt{\pi}}$$
对 $$$c=\sqrt{2}$$$ 和 $$$f{\left(u \right)} = e^{- u^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\frac{\sqrt{2} {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}}}{2 \sqrt{\pi}} = \frac{\sqrt{2} {\color{red}{\sqrt{2} \int{e^{- u^{2}} d u}}}}{2 \sqrt{\pi}}$$
该积分(误差函数)没有闭式表达式:
$$\frac{{\color{red}{\int{e^{- u^{2}} d u}}}}{\sqrt{\pi}} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}}{\sqrt{\pi}}$$
回忆一下 $$$u=\frac{\sqrt{2} x}{2}$$$:
$$\frac{\operatorname{erf}{\left({\color{red}{u}} \right)}}{2} = \frac{\operatorname{erf}{\left({\color{red}{\left(\frac{\sqrt{2} x}{2}\right)}} \right)}}{2}$$
因此,
$$\int{\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}} d x} = \frac{\operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$
加上积分常数:
$$\int{\frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}} d x} = \frac{\operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}+C$$
答案
$$$\int \frac{\sqrt{2} e^{- \frac{x^{2}}{2}}}{2 \sqrt{\pi}}\, dx = \frac{\operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} + C$$$A