$$$\cos{\left(x \right)} + 1$$$ 的积分
您的输入
求$$$\int \left(\cos{\left(x \right)} + 1\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(\cos{\left(x \right)} + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\cos{\left(x \right)} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$\int{\cos{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = \int{\cos{\left(x \right)} d x} + {\color{red}{x}}$$
余弦函数的积分为 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$x + {\color{red}{\int{\cos{\left(x \right)} d x}}} = x + {\color{red}{\sin{\left(x \right)}}}$$
因此,
$$\int{\left(\cos{\left(x \right)} + 1\right)d x} = x + \sin{\left(x \right)}$$
加上积分常数:
$$\int{\left(\cos{\left(x \right)} + 1\right)d x} = x + \sin{\left(x \right)}+C$$
答案
$$$\int \left(\cos{\left(x \right)} + 1\right)\, dx = \left(x + \sin{\left(x \right)}\right) + C$$$A