$$$- x^{3}$$$ 的积分
您的输入
求$$$\int \left(- x^{3}\right)\, dx$$$。
解答
对 $$$c=-1$$$ 和 $$$f{\left(x \right)} = x^{3}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\left(- x^{3}\right)d x}}} = {\color{red}{\left(- \int{x^{3} d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=3$$$:
$$- {\color{red}{\int{x^{3} d x}}}=- {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
因此,
$$\int{\left(- x^{3}\right)d x} = - \frac{x^{4}}{4}$$
加上积分常数:
$$\int{\left(- x^{3}\right)d x} = - \frac{x^{4}}{4}+C$$
答案
$$$\int \left(- x^{3}\right)\, dx = - \frac{x^{4}}{4} + C$$$A
Please try a new game Rotatly