$$$- \frac{2 \ln\left(3 x\right)}{x^{5}}$$$ 的积分

该计算器将求出$$$- \frac{2 \ln\left(3 x\right)}{x^{5}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- \frac{2 \ln\left(3 x\right)}{x^{5}}\right)\, dx$$$

解答

$$$c=-2$$$$$$f{\left(x \right)} = \frac{\ln{\left(3 x \right)}}{x^{5}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\left(- \frac{2 \ln{\left(3 x \right)}}{x^{5}}\right)d x}}} = {\color{red}{\left(- 2 \int{\frac{\ln{\left(3 x \right)}}{x^{5}} d x}\right)}}$$

对于积分$$$\int{\frac{\ln{\left(3 x \right)}}{x^{5}} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(3 x \right)}$$$$$$\operatorname{dv}=\frac{dx}{x^{5}}$$$

$$$\operatorname{du}=\left(\ln{\left(3 x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\frac{1}{x^{5}} d x}=- \frac{1}{4 x^{4}}$$$ (步骤见 »)。

该积分可以改写为

$$- 2 {\color{red}{\int{\frac{\ln{\left(3 x \right)}}{x^{5}} d x}}}=- 2 {\color{red}{\left(\ln{\left(3 x \right)} \cdot \left(- \frac{1}{4 x^{4}}\right)-\int{\left(- \frac{1}{4 x^{4}}\right) \cdot \frac{1}{x} d x}\right)}}=- 2 {\color{red}{\left(- \int{\left(- \frac{1}{4 x^{5}}\right)d x} - \frac{\ln{\left(3 x \right)}}{4 x^{4}}\right)}}$$

$$$c=- \frac{1}{4}$$$$$$f{\left(x \right)} = \frac{1}{x^{5}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$2 {\color{red}{\int{\left(- \frac{1}{4 x^{5}}\right)d x}}} + \frac{\ln{\left(3 x \right)}}{2 x^{4}} = 2 {\color{red}{\left(- \frac{\int{\frac{1}{x^{5}} d x}}{4}\right)}} + \frac{\ln{\left(3 x \right)}}{2 x^{4}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-5$$$

$$- \frac{{\color{red}{\int{\frac{1}{x^{5}} d x}}}}{2} + \frac{\ln{\left(3 x \right)}}{2 x^{4}}=- \frac{{\color{red}{\int{x^{-5} d x}}}}{2} + \frac{\ln{\left(3 x \right)}}{2 x^{4}}=- \frac{{\color{red}{\frac{x^{-5 + 1}}{-5 + 1}}}}{2} + \frac{\ln{\left(3 x \right)}}{2 x^{4}}=- \frac{{\color{red}{\left(- \frac{x^{-4}}{4}\right)}}}{2} + \frac{\ln{\left(3 x \right)}}{2 x^{4}}=- \frac{{\color{red}{\left(- \frac{1}{4 x^{4}}\right)}}}{2} + \frac{\ln{\left(3 x \right)}}{2 x^{4}}$$

因此,

$$\int{\left(- \frac{2 \ln{\left(3 x \right)}}{x^{5}}\right)d x} = \frac{\ln{\left(3 x \right)}}{2 x^{4}} + \frac{1}{8 x^{4}}$$

化简:

$$\int{\left(- \frac{2 \ln{\left(3 x \right)}}{x^{5}}\right)d x} = \frac{4 \ln{\left(x \right)} + 1 + 4 \ln{\left(3 \right)}}{8 x^{4}}$$

加上积分常数:

$$\int{\left(- \frac{2 \ln{\left(3 x \right)}}{x^{5}}\right)d x} = \frac{4 \ln{\left(x \right)} + 1 + 4 \ln{\left(3 \right)}}{8 x^{4}}+C$$

答案

$$$\int \left(- \frac{2 \ln\left(3 x\right)}{x^{5}}\right)\, dx = \frac{4 \ln\left(x\right) + 1 + 4 \ln\left(3\right)}{8 x^{4}} + C$$$A


Please try a new game Rotatly