$$$- \frac{x}{2} - 3 \ln\left(- x\right)$$$ 的积分
您的输入
求$$$\int \left(- \frac{x}{2} - 3 \ln\left(- x\right)\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(- \frac{x}{2} - 3 \ln{\left(- x \right)}\right)d x}}} = {\color{red}{\left(- \int{\frac{x}{2} d x} - \int{3 \ln{\left(- x \right)} d x}\right)}}$$
对 $$$c=3$$$ 和 $$$f{\left(x \right)} = \ln{\left(- x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- \int{\frac{x}{2} d x} - {\color{red}{\int{3 \ln{\left(- x \right)} d x}}} = - \int{\frac{x}{2} d x} - {\color{red}{\left(3 \int{\ln{\left(- x \right)} d x}\right)}}$$
设$$$u=- x$$$。
则$$$du=\left(- x\right)^{\prime }dx = - dx$$$ (步骤见»),并有$$$dx = - du$$$。
所以,
$$- \int{\frac{x}{2} d x} - 3 {\color{red}{\int{\ln{\left(- x \right)} d x}}} = - \int{\frac{x}{2} d x} - 3 {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$- \int{\frac{x}{2} d x} - 3 {\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}} = - \int{\frac{x}{2} d x} - 3 {\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}$$
对于积分$$$\int{\ln{\left(u \right)} d u}$$$,使用分部积分法$$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$。
设 $$$\operatorname{\kappa}=\ln{\left(u \right)}$$$ 和 $$$\operatorname{dv}=du$$$。
则 $$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。
所以,
$$- \int{\frac{x}{2} d x} + 3 {\color{red}{\int{\ln{\left(u \right)} d u}}}=- \int{\frac{x}{2} d x} + 3 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=- \int{\frac{x}{2} d x} + 3 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$3 u \ln{\left(u \right)} - \int{\frac{x}{2} d x} - 3 {\color{red}{\int{1 d u}}} = 3 u \ln{\left(u \right)} - \int{\frac{x}{2} d x} - 3 {\color{red}{u}}$$
回忆一下 $$$u=- x$$$:
$$- \int{\frac{x}{2} d x} - 3 {\color{red}{u}} + 3 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - \int{\frac{x}{2} d x} - 3 {\color{red}{\left(- x\right)}} + 3 {\color{red}{\left(- x\right)}} \ln{\left({\color{red}{\left(- x\right)}} \right)}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- 3 x \ln{\left(- x \right)} + 3 x - {\color{red}{\int{\frac{x}{2} d x}}} = - 3 x \ln{\left(- x \right)} + 3 x - {\color{red}{\left(\frac{\int{x d x}}{2}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$- 3 x \ln{\left(- x \right)} + 3 x - \frac{{\color{red}{\int{x d x}}}}{2}=- 3 x \ln{\left(- x \right)} + 3 x - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=- 3 x \ln{\left(- x \right)} + 3 x - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$
因此,
$$\int{\left(- \frac{x}{2} - 3 \ln{\left(- x \right)}\right)d x} = - \frac{x^{2}}{4} - 3 x \ln{\left(- x \right)} + 3 x$$
化简:
$$\int{\left(- \frac{x}{2} - 3 \ln{\left(- x \right)}\right)d x} = \frac{x \left(- x - 12 \ln{\left(- x \right)} + 12\right)}{4}$$
加上积分常数:
$$\int{\left(- \frac{x}{2} - 3 \ln{\left(- x \right)}\right)d x} = \frac{x \left(- x - 12 \ln{\left(- x \right)} + 12\right)}{4}+C$$
答案
$$$\int \left(- \frac{x}{2} - 3 \ln\left(- x\right)\right)\, dx = \frac{x \left(- x - 12 \ln\left(- x\right) + 12\right)}{4} + C$$$A