$$$- x \tan{\left(x \right)}$$$ 的积分

该计算器将求出$$$- x \tan{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- x \tan{\left(x \right)}\right)\, dx$$$

解答

$$$c=-1$$$$$$f{\left(x \right)} = x \tan{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\left(- x \tan{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{x \tan{\left(x \right)} d x}\right)}}$$

对于积分$$$\int{x \tan{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=\tan{\left(x \right)} dx$$$

$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\tan{\left(x \right)} d x}=- \ln{\left(\cos{\left(x \right)} \right)}$$$ (步骤见 »)。

所以,

$$- {\color{red}{\int{x \tan{\left(x \right)} d x}}}=- {\color{red}{\left(x \cdot \left(- \ln{\left(\cos{\left(x \right)} \right)}\right)-\int{\left(- \ln{\left(\cos{\left(x \right)} \right)}\right) \cdot 1 d x}\right)}}=- {\color{red}{\left(- x \ln{\left(\cos{\left(x \right)} \right)} - \int{\left(- \ln{\left(\cos{\left(x \right)} \right)}\right)d x}\right)}}$$

$$$c=-1$$$$$$f{\left(x \right)} = \ln{\left(\cos{\left(x \right)} \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$x \ln{\left(\cos{\left(x \right)} \right)} + {\color{red}{\int{\left(- \ln{\left(\cos{\left(x \right)} \right)}\right)d x}}} = x \ln{\left(\cos{\left(x \right)} \right)} + {\color{red}{\left(- \int{\ln{\left(\cos{\left(x \right)} \right)} d x}\right)}}$$

该积分没有闭式表达式:

$$x \ln{\left(\cos{\left(x \right)} \right)} - {\color{red}{\int{\ln{\left(\cos{\left(x \right)} \right)} d x}}} = x \ln{\left(\cos{\left(x \right)} \right)} - {\color{red}{\left(\frac{i x^{2}}{2} - x \ln{\left(e^{2 i x} + 1 \right)} + x \ln{\left(\cos{\left(x \right)} \right)} + \frac{i \operatorname{Li}_{2}\left(- e^{2 i x}\right)}{2}\right)}}$$

因此,

$$\int{\left(- x \tan{\left(x \right)}\right)d x} = - \frac{i x^{2}}{2} + x \ln{\left(e^{2 i x} + 1 \right)} - \frac{i \operatorname{Li}_{2}\left(- e^{2 i x}\right)}{2}$$

加上积分常数:

$$\int{\left(- x \tan{\left(x \right)}\right)d x} = - \frac{i x^{2}}{2} + x \ln{\left(e^{2 i x} + 1 \right)} - \frac{i \operatorname{Li}_{2}\left(- e^{2 i x}\right)}{2}+C$$

答案

$$$\int \left(- x \tan{\left(x \right)}\right)\, dx = \left(- \frac{i x^{2}}{2} + x \ln\left(e^{2 i x} + 1\right) - \frac{i \operatorname{Li}_{2}\left(- e^{2 i x}\right)}{2}\right) + C$$$A


Please try a new game Rotatly