$$$\frac{x^{2}}{x - 7}$$$ 的积分
您的输入
求$$$\int \frac{x^{2}}{x - 7}\, dx$$$。
解答
由于分子次数不小于分母次数,进行多项式长除法(步骤见»):
$${\color{red}{\int{\frac{x^{2}}{x - 7} d x}}} = {\color{red}{\int{\left(x + 7 + \frac{49}{x - 7}\right)d x}}}$$
逐项积分:
$${\color{red}{\int{\left(x + 7 + \frac{49}{x - 7}\right)d x}}} = {\color{red}{\left(\int{7 d x} + \int{x d x} + \int{\frac{49}{x - 7} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=7$$$:
$$\int{x d x} + \int{\frac{49}{x - 7} d x} + {\color{red}{\int{7 d x}}} = \int{x d x} + \int{\frac{49}{x - 7} d x} + {\color{red}{\left(7 x\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$7 x + \int{\frac{49}{x - 7} d x} + {\color{red}{\int{x d x}}}=7 x + \int{\frac{49}{x - 7} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=7 x + \int{\frac{49}{x - 7} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
对 $$$c=49$$$ 和 $$$f{\left(x \right)} = \frac{1}{x - 7}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$\frac{x^{2}}{2} + 7 x + {\color{red}{\int{\frac{49}{x - 7} d x}}} = \frac{x^{2}}{2} + 7 x + {\color{red}{\left(49 \int{\frac{1}{x - 7} d x}\right)}}$$
设$$$u=x - 7$$$。
则$$$du=\left(x - 7\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
因此,
$$\frac{x^{2}}{2} + 7 x + 49 {\color{red}{\int{\frac{1}{x - 7} d x}}} = \frac{x^{2}}{2} + 7 x + 49 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{x^{2}}{2} + 7 x + 49 {\color{red}{\int{\frac{1}{u} d u}}} = \frac{x^{2}}{2} + 7 x + 49 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=x - 7$$$:
$$\frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{{\color{red}{\left(x - 7\right)}}}\right| \right)}$$
因此,
$$\int{\frac{x^{2}}{x - 7} d x} = \frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{x - 7}\right| \right)}$$
加上积分常数:
$$\int{\frac{x^{2}}{x - 7} d x} = \frac{x^{2}}{2} + 7 x + 49 \ln{\left(\left|{x - 7}\right| \right)}+C$$
答案
$$$\int \frac{x^{2}}{x - 7}\, dx = \left(\frac{x^{2}}{2} + 7 x + 49 \ln\left(\left|{x - 7}\right|\right)\right) + C$$$A