$$$\sqrt{2} \left(1 - \sin{\left(2 x \right)}\right)$$$ 的积分
您的输入
求$$$\int \sqrt{2} \left(1 - \sin{\left(2 x \right)}\right)\, dx$$$。
解答
对 $$$c=\sqrt{2}$$$ 和 $$$f{\left(x \right)} = 1 - \sin{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\sqrt{2} \left(1 - \sin{\left(2 x \right)}\right) d x}}} = {\color{red}{\sqrt{2} \int{\left(1 - \sin{\left(2 x \right)}\right)d x}}}$$
逐项积分:
$$\sqrt{2} {\color{red}{\int{\left(1 - \sin{\left(2 x \right)}\right)d x}}} = \sqrt{2} {\color{red}{\left(\int{1 d x} - \int{\sin{\left(2 x \right)} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$\sqrt{2} \left(- \int{\sin{\left(2 x \right)} d x} + {\color{red}{\int{1 d x}}}\right) = \sqrt{2} \left(- \int{\sin{\left(2 x \right)} d x} + {\color{red}{x}}\right)$$
设$$$u=2 x$$$。
则$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$。
因此,
$$\sqrt{2} \left(x - {\color{red}{\int{\sin{\left(2 x \right)} d x}}}\right) = \sqrt{2} \left(x - {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}\right)$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$\sqrt{2} \left(x - {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}\right) = \sqrt{2} \left(x - {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}\right)$$
正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\sqrt{2} \left(x - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2}\right) = \sqrt{2} \left(x - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}\right)$$
回忆一下 $$$u=2 x$$$:
$$\sqrt{2} \left(x + \frac{\cos{\left({\color{red}{u}} \right)}}{2}\right) = \sqrt{2} \left(x + \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{2}\right)$$
因此,
$$\int{\sqrt{2} \left(1 - \sin{\left(2 x \right)}\right) d x} = \sqrt{2} \left(x + \frac{\cos{\left(2 x \right)}}{2}\right)$$
加上积分常数:
$$\int{\sqrt{2} \left(1 - \sin{\left(2 x \right)}\right) d x} = \sqrt{2} \left(x + \frac{\cos{\left(2 x \right)}}{2}\right)+C$$
答案
$$$\int \sqrt{2} \left(1 - \sin{\left(2 x \right)}\right)\, dx = \sqrt{2} \left(x + \frac{\cos{\left(2 x \right)}}{2}\right) + C$$$A