$$$\ln\left(4 - 2 x\right)$$$ 的积分
您的输入
求$$$\int \ln\left(4 - 2 x\right)\, dx$$$。
解答
设$$$u=4 - 2 x$$$。
则$$$du=\left(4 - 2 x\right)^{\prime }dx = - 2 dx$$$ (步骤见»),并有$$$dx = - \frac{du}{2}$$$。
因此,
$${\color{red}{\int{\ln{\left(4 - 2 x \right)} d x}}} = {\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{2}\right)d u}}}$$
对 $$$c=- \frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{2}\right)d u}}} = {\color{red}{\left(- \frac{\int{\ln{\left(u \right)} d u}}{2}\right)}}$$
对于积分$$$\int{\ln{\left(u \right)} d u}$$$,使用分部积分法$$$\int \operatorname{\kappa} \operatorname{dv} = \operatorname{\kappa}\operatorname{v} - \int \operatorname{v} \operatorname{d\kappa}$$$。
设 $$$\operatorname{\kappa}=\ln{\left(u \right)}$$$ 和 $$$\operatorname{dv}=du$$$。
则 $$$\operatorname{d\kappa}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。
积分变为
$$- \frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{2}=- \frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{2}=- \frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{2}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$- \frac{u \ln{\left(u \right)}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{u \ln{\left(u \right)}}{2} + \frac{{\color{red}{u}}}{2}$$
回忆一下 $$$u=4 - 2 x$$$:
$$\frac{{\color{red}{u}}}{2} - \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{2} = \frac{{\color{red}{\left(4 - 2 x\right)}}}{2} - \frac{{\color{red}{\left(4 - 2 x\right)}} \ln{\left({\color{red}{\left(4 - 2 x\right)}} \right)}}{2}$$
因此,
$$\int{\ln{\left(4 - 2 x \right)} d x} = - x - \frac{\left(4 - 2 x\right) \ln{\left(4 - 2 x \right)}}{2} + 2$$
化简:
$$\int{\ln{\left(4 - 2 x \right)} d x} = \left(x - 2\right) \left(\ln{\left(2 - x \right)} - 1 + \ln{\left(2 \right)}\right)$$
加上积分常数:
$$\int{\ln{\left(4 - 2 x \right)} d x} = \left(x - 2\right) \left(\ln{\left(2 - x \right)} - 1 + \ln{\left(2 \right)}\right)+C$$
答案
$$$\int \ln\left(4 - 2 x\right)\, dx = \left(x - 2\right) \left(\ln\left(2 - x\right) - 1 + \ln\left(2\right)\right) + C$$$A