$$$\frac{9}{10 x - 20}$$$ 的积分
您的输入
求$$$\int \frac{9}{10 x - 20}\, dx$$$。
解答
化简被积函数:
$${\color{red}{\int{\frac{9}{10 x - 20} d x}}} = {\color{red}{\int{\frac{9}{10 \left(x - 2\right)} d x}}}$$
对 $$$c=\frac{9}{10}$$$ 和 $$$f{\left(x \right)} = \frac{1}{x - 2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{9}{10 \left(x - 2\right)} d x}}} = {\color{red}{\left(\frac{9 \int{\frac{1}{x - 2} d x}}{10}\right)}}$$
设$$$u=x - 2$$$。
则$$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$。
所以,
$$\frac{9 {\color{red}{\int{\frac{1}{x - 2} d x}}}}{10} = \frac{9 {\color{red}{\int{\frac{1}{u} d u}}}}{10}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{9 {\color{red}{\int{\frac{1}{u} d u}}}}{10} = \frac{9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{10}$$
回忆一下 $$$u=x - 2$$$:
$$\frac{9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{10} = \frac{9 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}}{10}$$
因此,
$$\int{\frac{9}{10 x - 20} d x} = \frac{9 \ln{\left(\left|{x - 2}\right| \right)}}{10}$$
加上积分常数:
$$\int{\frac{9}{10 x - 20} d x} = \frac{9 \ln{\left(\left|{x - 2}\right| \right)}}{10}+C$$
答案
$$$\int \frac{9}{10 x - 20}\, dx = \frac{9 \ln\left(\left|{x - 2}\right|\right)}{10} + C$$$A