$$$x^{\frac{7}{6}}$$$ 的积分
您的输入
求$$$\int x^{\frac{7}{6}}\, dx$$$。
解答
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=\frac{7}{6}$$$:
$${\color{red}{\int{x^{\frac{7}{6}} d x}}}={\color{red}{\frac{x^{1 + \frac{7}{6}}}{1 + \frac{7}{6}}}}={\color{red}{\left(\frac{6 x^{\frac{13}{6}}}{13}\right)}}$$
因此,
$$\int{x^{\frac{7}{6}} d x} = \frac{6 x^{\frac{13}{6}}}{13}$$
加上积分常数:
$$\int{x^{\frac{7}{6}} d x} = \frac{6 x^{\frac{13}{6}}}{13}+C$$
答案
$$$\int x^{\frac{7}{6}}\, dx = \frac{6 x^{\frac{13}{6}}}{13} + C$$$A
Please try a new game Rotatly