$$$- x^{2} + \frac{\sqrt{10}}{10 \sqrt{x}}$$$ 的积分

该计算器将求出$$$- x^{2} + \frac{\sqrt{10}}{10 \sqrt{x}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- x^{2} + \frac{\sqrt{10}}{10 \sqrt{x}}\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(- x^{2} + \frac{\sqrt{10}}{10 \sqrt{x}}\right)d x}}} = {\color{red}{\left(- \int{x^{2} d x} + \int{\frac{\sqrt{10}}{10 \sqrt{x}} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$\int{\frac{\sqrt{10}}{10 \sqrt{x}} d x} - {\color{red}{\int{x^{2} d x}}}=\int{\frac{\sqrt{10}}{10 \sqrt{x}} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{\frac{\sqrt{10}}{10 \sqrt{x}} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

$$$c=\frac{\sqrt{10}}{10}$$$$$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{x^{3}}{3} + {\color{red}{\int{\frac{\sqrt{10}}{10 \sqrt{x}} d x}}} = - \frac{x^{3}}{3} + {\color{red}{\left(\frac{\sqrt{10} \int{\frac{1}{\sqrt{x}} d x}}{10}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- \frac{1}{2}$$$

$$- \frac{x^{3}}{3} + \frac{\sqrt{10} {\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}}{10}=- \frac{x^{3}}{3} + \frac{\sqrt{10} {\color{red}{\int{x^{- \frac{1}{2}} d x}}}}{10}=- \frac{x^{3}}{3} + \frac{\sqrt{10} {\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{10}=- \frac{x^{3}}{3} + \frac{\sqrt{10} {\color{red}{\left(2 x^{\frac{1}{2}}\right)}}}{10}=- \frac{x^{3}}{3} + \frac{\sqrt{10} {\color{red}{\left(2 \sqrt{x}\right)}}}{10}$$

因此,

$$\int{\left(- x^{2} + \frac{\sqrt{10}}{10 \sqrt{x}}\right)d x} = \frac{\sqrt{10} \sqrt{x}}{5} - \frac{x^{3}}{3}$$

加上积分常数:

$$\int{\left(- x^{2} + \frac{\sqrt{10}}{10 \sqrt{x}}\right)d x} = \frac{\sqrt{10} \sqrt{x}}{5} - \frac{x^{3}}{3}+C$$

答案

$$$\int \left(- x^{2} + \frac{\sqrt{10}}{10 \sqrt{x}}\right)\, dx = \left(\frac{\sqrt{10} \sqrt{x}}{5} - \frac{x^{3}}{3}\right) + C$$$A


Please try a new game Rotatly