$$$\frac{1}{x \ln^{3}\left(x\right)}$$$ 关于$$$t$$$的积分

该计算器将求出$$$\frac{1}{x \ln^{3}\left(x\right)}$$$关于$$$t$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt$$$

解答

应用常数法则 $$$\int c\, dt = c t$$$,使用 $$$c=\frac{1}{x \ln{\left(x \right)}^{3}}$$$

$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t}}} = {\color{red}{\frac{t}{x \ln{\left(x \right)}^{3}}}}$$

因此,

$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}$$

加上积分常数:

$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}+C$$

答案

$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt = \frac{t}{x \ln^{3}\left(x\right)} + C$$$A


Please try a new game Rotatly