$$$\frac{1}{x \ln^{3}\left(x\right)}$$$ 关于$$$t$$$的积分
您的输入
求$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt$$$。
解答
应用常数法则 $$$\int c\, dt = c t$$$,使用 $$$c=\frac{1}{x \ln{\left(x \right)}^{3}}$$$:
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t}}} = {\color{red}{\frac{t}{x \ln{\left(x \right)}^{3}}}}$$
因此,
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}$$
加上积分常数:
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}+C$$
答案
$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt = \frac{t}{x \ln^{3}\left(x\right)} + C$$$A
Please try a new game Rotatly