$$$\frac{1}{\tan^{2}{\left(x \right)}}$$$ 的积分

该计算器将求出$$$\frac{1}{\tan^{2}{\left(x \right)}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{\tan^{2}{\left(x \right)}}\, dx$$$

解答

$$$u=\tan{\left(x \right)}$$$

$$$x=\operatorname{atan}{\left(u \right)}$$$$$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$(步骤见»)。

该积分可以改写为

$${\color{red}{\int{\frac{1}{\tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u^{2} \left(u^{2} + 1\right)} d u}}}$$

进行部分分式分解(步骤可见»):

$${\color{red}{\int{\frac{1}{u^{2} \left(u^{2} + 1\right)} d u}}} = {\color{red}{\int{\left(- \frac{1}{u^{2} + 1} + \frac{1}{u^{2}}\right)d u}}}$$

逐项积分:

$${\color{red}{\int{\left(- \frac{1}{u^{2} + 1} + \frac{1}{u^{2}}\right)d u}}} = {\color{red}{\left(\int{\frac{1}{u^{2}} d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-2$$$

$$- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{u^{-2} d u}}}=- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\left(- u^{-1}\right)}}=- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\left(- \frac{1}{u}\right)}}$$

$$$\frac{1}{u^{2} + 1}$$$ 的积分为 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} - \frac{1}{u} = - {\color{red}{\operatorname{atan}{\left(u \right)}}} - \frac{1}{u}$$

回忆一下 $$$u=\tan{\left(x \right)}$$$:

$$- \operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}}^{-1} = - \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} - {\color{red}{\tan{\left(x \right)}}}^{-1}$$

因此,

$$\int{\frac{1}{\tan^{2}{\left(x \right)}} d x} = - \operatorname{atan}{\left(\tan{\left(x \right)} \right)} - \frac{1}{\tan{\left(x \right)}}$$

化简:

$$\int{\frac{1}{\tan^{2}{\left(x \right)}} d x} = - x - \frac{1}{\tan{\left(x \right)}}$$

加上积分常数:

$$\int{\frac{1}{\tan^{2}{\left(x \right)}} d x} = - x - \frac{1}{\tan{\left(x \right)}}+C$$

答案

$$$\int \frac{1}{\tan^{2}{\left(x \right)}}\, dx = \left(- x - \frac{1}{\tan{\left(x \right)}}\right) + C$$$A


Please try a new game Rotatly