$$$\frac{1}{- \sqrt{3} x + \sqrt{2} x}$$$ 的积分
您的输入
求$$$\int \frac{1}{- \sqrt{3} x + \sqrt{2} x}\, dx$$$。
解答
设$$$u=- \sqrt{3} x + \sqrt{2} x$$$。
则$$$du=\left(- \sqrt{3} x + \sqrt{2} x\right)^{\prime }dx = \left(- \sqrt{3} + \sqrt{2}\right) dx$$$ (步骤见»),并有$$$dx = \frac{du}{- \sqrt{3} + \sqrt{2}}$$$。
该积分可以改写为
$${\color{red}{\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x}}} = {\color{red}{\int{\frac{1}{u \left(- \sqrt{3} + \sqrt{2}\right)} d u}}}$$
对 $$$c=\frac{1}{- \sqrt{3} + \sqrt{2}}$$$ 和 $$$f{\left(u \right)} = \frac{1}{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{1}{u \left(- \sqrt{3} + \sqrt{2}\right)} d u}}} = {\color{red}{\frac{\int{\frac{1}{u} d u}}{- \sqrt{3} + \sqrt{2}}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{- \sqrt{3} + \sqrt{2}} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{- \sqrt{3} + \sqrt{2}}$$
回忆一下 $$$u=- \sqrt{3} x + \sqrt{2} x$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{- \sqrt{3} + \sqrt{2}} = \frac{\ln{\left(\left|{{\color{red}{\left(- \sqrt{3} x + \sqrt{2} x\right)}}}\right| \right)}}{- \sqrt{3} + \sqrt{2}}$$
因此,
$$\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x} = \frac{\ln{\left(\left|{- \sqrt{3} x + \sqrt{2} x}\right| \right)}}{- \sqrt{3} + \sqrt{2}}$$
化简:
$$\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x} = \frac{\ln{\left(\left|{x}\right| \right)} + \ln{\left(- \sqrt{2} + \sqrt{3} \right)}}{- \sqrt{3} + \sqrt{2}}$$
加上积分常数:
$$\int{\frac{1}{- \sqrt{3} x + \sqrt{2} x} d x} = \frac{\ln{\left(\left|{x}\right| \right)} + \ln{\left(- \sqrt{2} + \sqrt{3} \right)}}{- \sqrt{3} + \sqrt{2}}+C$$
答案
$$$\int \frac{1}{- \sqrt{3} x + \sqrt{2} x}\, dx = \frac{\ln\left(\left|{x}\right|\right) + \ln\left(- \sqrt{2} + \sqrt{3}\right)}{- \sqrt{3} + \sqrt{2}} + C$$$A