$$$\frac{x - 7}{823543 x^{7}}$$$ 的积分

该计算器将求出$$$\frac{x - 7}{823543 x^{7}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{x - 7}{823543 x^{7}}\, dx$$$

解答

输入已重写为:$$$\int{\frac{x - 7}{823543 x^{7}} d x}=\int{\frac{\frac{x}{823543} - \frac{1}{117649}}{x^{7}} d x}$$$

化简被积函数:

$${\color{red}{\int{\frac{\frac{x}{823543} - \frac{1}{117649}}{x^{7}} d x}}} = {\color{red}{\int{\frac{x - 7}{823543 x^{7}} d x}}}$$

$$$c=\frac{1}{823543}$$$$$$f{\left(x \right)} = \frac{x - 7}{x^{7}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{x - 7}{823543 x^{7}} d x}}} = {\color{red}{\left(\frac{\int{\frac{x - 7}{x^{7}} d x}}{823543}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{\frac{x - 7}{x^{7}} d x}}}}{823543} = \frac{{\color{red}{\int{\left(\frac{1}{x^{6}} - \frac{7}{x^{7}}\right)d x}}}}{823543}$$

逐项积分:

$$\frac{{\color{red}{\int{\left(\frac{1}{x^{6}} - \frac{7}{x^{7}}\right)d x}}}}{823543} = \frac{{\color{red}{\left(- \int{\frac{7}{x^{7}} d x} + \int{\frac{1}{x^{6}} d x}\right)}}}{823543}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-6$$$

$$- \frac{\int{\frac{7}{x^{7}} d x}}{823543} + \frac{{\color{red}{\int{\frac{1}{x^{6}} d x}}}}{823543}=- \frac{\int{\frac{7}{x^{7}} d x}}{823543} + \frac{{\color{red}{\int{x^{-6} d x}}}}{823543}=- \frac{\int{\frac{7}{x^{7}} d x}}{823543} + \frac{{\color{red}{\frac{x^{-6 + 1}}{-6 + 1}}}}{823543}=- \frac{\int{\frac{7}{x^{7}} d x}}{823543} + \frac{{\color{red}{\left(- \frac{x^{-5}}{5}\right)}}}{823543}=- \frac{\int{\frac{7}{x^{7}} d x}}{823543} + \frac{{\color{red}{\left(- \frac{1}{5 x^{5}}\right)}}}{823543}$$

$$$c=7$$$$$$f{\left(x \right)} = \frac{1}{x^{7}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{{\color{red}{\int{\frac{7}{x^{7}} d x}}}}{823543} - \frac{1}{4117715 x^{5}} = - \frac{{\color{red}{\left(7 \int{\frac{1}{x^{7}} d x}\right)}}}{823543} - \frac{1}{4117715 x^{5}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-7$$$

$$- \frac{{\color{red}{\int{\frac{1}{x^{7}} d x}}}}{117649} - \frac{1}{4117715 x^{5}}=- \frac{{\color{red}{\int{x^{-7} d x}}}}{117649} - \frac{1}{4117715 x^{5}}=- \frac{{\color{red}{\frac{x^{-7 + 1}}{-7 + 1}}}}{117649} - \frac{1}{4117715 x^{5}}=- \frac{{\color{red}{\left(- \frac{x^{-6}}{6}\right)}}}{117649} - \frac{1}{4117715 x^{5}}=- \frac{{\color{red}{\left(- \frac{1}{6 x^{6}}\right)}}}{117649} - \frac{1}{4117715 x^{5}}$$

因此,

$$\int{\frac{\frac{x}{823543} - \frac{1}{117649}}{x^{7}} d x} = - \frac{1}{4117715 x^{5}} + \frac{1}{705894 x^{6}}$$

化简:

$$\int{\frac{\frac{x}{823543} - \frac{1}{117649}}{x^{7}} d x} = \frac{35 - 6 x}{24706290 x^{6}}$$

加上积分常数:

$$\int{\frac{\frac{x}{823543} - \frac{1}{117649}}{x^{7}} d x} = \frac{35 - 6 x}{24706290 x^{6}}+C$$

答案

$$$\int \frac{x - 7}{823543 x^{7}}\, dx = \frac{35 - 6 x}{24706290 x^{6}} + C$$$A


Please try a new game Rotatly